**Mathematical Principals of Dynamic Systems and the Foundations of Quantum Physics**

by Eric Tesse

**Publisher**: arXiv 2011**Number of pages**: 87

**Description**:

This article will take up the question of what underlies the quantum formalism, whether it can be derived from simpler mathematical structures, and if so, what physical properties a system must possess in order for the formalism to hold. Of particular interest will be the question of determining the set of allowed experiments.

Download or read it online for free here:

**Download link**

(670KB, PDF)

## Similar books

**Stability Analysis via Matrix Functions Method**

by

**A. A. Martynyuk**-

**Bookboon**

The monograph presents a generalization of the well-known Lyapunov function method and related concepts to the matrix function case within the framework of systematic stability analysis of dynamical systems (differential equations).

(

**4705**views)

**The Chaos Hypertextbook**

by

**Glenn Elert**

This book is written for anyone with an interest in chaos, fractals, non-linear dynamics, or mathematics in general. It's a moderately heavy piece of work, requiring a bit of mathematical knowledge, but it is definitely not aimed at mathematicians.

(

**9271**views)

**Data Assimilation: A Mathematical Introduction**

by

**K.J.H. Law, A.M. Stuart, K.C. Zygalakis**-

**arXiv.org**

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation. Authors develop a framework in which a Bayesian formulation of the problem provides the bedrock for the derivation and analysis of algorithms.

(

**1100**views)

**Hyperbolic Manifolds, Discrete Groups and Ergodic Theory**

by

**Curtis T. McMullen**-

**Harvard University**

Contents: Ergodic theory; Dynamics on hyperbolic surfaces; Orbit counting, equidistribution and arithmetic; Spectral theory; Mixing of unitary representations of SLnR; Amenability; The Laplacian; All unitary representations of PSL2(R); etc.

(

**3302**views)