**Lectures on Complex Analytic Manifolds**

by L. Schwartz

**Publisher**: Tata Institute of Fundamental Research 1955**Number of pages**: 163

**Description**:

Topics covered: Differentiable Manifolds; C maps, diffeomorphisms. Effect of a map; The Tensor Bundles; Existence and uniqueness of the exterior differentiation; Manifolds with boundary; Integration on chains; Some examples of currents; Currents with compact support; de Rham's Theorem; The star operator; Green's Operator G; Real vector spaces with a J-Structure; The operator J; The canonical orientation of a complex manifold; etc.

Download or read it online for free here:

**Download link**

(660KB, PDF)

## Similar books

**Complex Manifolds and Hermitian Differential Geometry**

by

**Andrew D. Hwang**-

**University of Toronto**

The intent is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. A number of interesting examples is provided.

(

**7498**views)

**Complex Manifolds**

by

**Julius Ross**-

**Stanford University**

From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.

(

**1653**views)

**Dynamics in One Complex Variable**

by

**John Milnor**-

**Princeton University Press**

This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.

(

**10643**views)

**Quantum Physics, Relativity, and Complex Spacetime**

by

**Gerald Kaiser**-

**University of Massachusetts at Lowell**

A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime.

(

**10015**views)