**Commutative Algebra**

by Pete L. Clark

**Publisher**: University of Georgia 2015**Number of pages**: 363

**Description**:

Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; Factorization; Dedekind domains; Picard groups.

Download or read it online for free here:

**Download link**

(1.9MB, PDF)

## Similar books

**The Algebraic Theory of Modular Systems**

by

**Francis Sowerby Macaulay**-

**Cambridge University Press**

Many of the ideas introduced by F.S. Macaulay in this classic book have developed into central concepts in what has become the branch of mathematics known as Commutative Algebra. Today his name is remembered through the term 'Cohen-Macaulay ring'.

(

**9782**views)

**Commutative Algebra**

by

**Keerthi Madapusi**-

**Harvard University**

Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras; etc.

(

**11449**views)

**Commutative Algebra and Noncommutative Algebraic Geometry**

by

**David Eisenbud, et al.**-

**Cambridge University Press**

The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.

(

**6186**views)

**Trends in Commutative Algebra**

by

**Luchezar L. Avramov, at al.**-

**Cambridge University Press**

This book focuses on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.

(

**11061**views)