**Commutative Algebra**

by Pete L. Clark

**Publisher**: University of Georgia 2015**Number of pages**: 363

**Description**:

Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; Factorization; Dedekind domains; Picard groups.

Download or read it online for free here:

**Download link**

(1.9MB, PDF)

## Similar books

**Introduction to Commutative Algebra**

by

**Thomas J. Haines**-

**University of Maryland**

Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.

(

**6177**views)

**The CRing Project: a collaborative open source textbook on commutative algebra**

by

**Shishir Agrawal, et al.**-

**CRing Project**

The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the EGA or SGA level. Suitable for a beginning undergraduate with a background in abstract algebra.

(

**5699**views)

**Lectures on Commutative Algebra**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.

(

**5331**views)

**A Primer of Commutative Algebra**

by

**J.S. Milne**

These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.

(

**5861**views)