Logo

An Introduction to Microlocal Analysis

Small book cover: An Introduction to Microlocal Analysis

An Introduction to Microlocal Analysis
by

Publisher: MIT
Number of pages: 182

Description:
One of the origins of scattering theory is the study of quantum mechanical systems, generally involving potentials. The scattering theory for perturbations of the flat Laplacian is discussed with the initial approach being via the solution of the Cauchy problem for the corresponding perturbed wave equation.

Download or read it online for free here:
Download link
(820KB, PDF)

Similar books

Book cover: Quantum Theory, Groups and Representations: An IntroductionQuantum Theory, Groups and Representations: An Introduction
by - Columbia University
These notes cover the basics of quantum mechanics, from a point of view emphasizing the role of unitary representations of Lie groups in the foundations of the subject. The approach to this material is simultaneously rather advanced...
(4697 views)
Book cover: Mathematical Foundations of Quantum MechanicsMathematical Foundations of Quantum Mechanics
by - arXiv
The author reviews the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas ...
(2869 views)
Book cover: Symplectic Geometry of Quantum NoiseSymplectic Geometry of Quantum Noise
by - arXiv
We discuss a quantum counterpart of certain constraints on Poisson brackets coming from 'hard' symplectic geometry. They can be interpreted in terms of the quantum noise of observables and their joint measurements in operational quantum mechanics.
(4744 views)
Book cover: Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanicsLecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics
by - arXiv
A graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization.
(7299 views)