Logo

An Introduction to Microlocal Analysis

Small book cover: An Introduction to Microlocal Analysis

An Introduction to Microlocal Analysis
by

Publisher: MIT
Number of pages: 182

Description:
One of the origins of scattering theory is the study of quantum mechanical systems, generally involving potentials. The scattering theory for perturbations of the flat Laplacian is discussed with the initial approach being via the solution of the Cauchy problem for the corresponding perturbed wave equation.

Download or read it online for free here:
Download link
(820KB, PDF)

Similar books

Book cover: Quantum Theory, Groups and Representations: An IntroductionQuantum Theory, Groups and Representations: An Introduction
by - Columbia University
These notes cover the basics of quantum mechanics, from a point of view emphasizing the role of unitary representations of Lie groups in the foundations of the subject. The approach to this material is simultaneously rather advanced...
(6375 views)
Book cover: Lectures on Quantum Mechanics for MathematiciansLectures on Quantum Mechanics for Mathematicians
by - arXiv.org
The main goal of these lectures is introduction to Quantum Mechanics for mathematically-minded readers. The second goal is to discuss the mathematical interpretation of the main quantum postulates: transitions between quantum stationary orbits ...
(918 views)
Book cover: Homological Tools for the Quantum MechanicHomological Tools for the Quantum Mechanic
by - arXiv.org
This paper is an introduction to work motivated by the question 'can multipartite entanglement be detected by homological algebra?' We introduce cochain complexes associated to multipartite density states whose cohomology detects factorizability.
(1382 views)
Book cover: Mathematical Tools of Quantum MechanicsMathematical Tools of Quantum Mechanics
by - Sissa, Trieste
The theory which is presented here is Quantum Mechanics as formulated in its essential parts on one hand by de Broglie and Schroedinger and on the other by Born, Heisenberg and Jordan with important contributions by Dirac and Pauli.
(7186 views)