Logo

Lower K- and L-theory by Andrew Ranicki

Large book cover: Lower K- and L-theory

Lower K- and L-theory
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521438012
ISBN-13: 9780521438018
Number of pages: 177

Description:
This is the first treatment in book form of the applications of the lower K- and L-groups (which are the components of the Grothendieck groups of modules and quadratic forms over polynomial extension rings) to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. The author uses only elementary constructions and gives a full algebraic account of the groups involved.

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Foliations and the Geometry of 3-manifoldsFoliations and the Geometry of 3-manifolds
by - Oxford University Press
The book gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.
(7399 views)
Book cover: Algebraic and Geometric TopologyAlgebraic and Geometric Topology
by - Springer
The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.
(10203 views)
Book cover: Algebraic and Geometric SurgeryAlgebraic and Geometric Surgery
by - Oxford University Press
Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.
(4735 views)
Book cover: A Geometric Approach to Differential FormsA Geometric Approach to Differential Forms
by - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(8523 views)