Logo

Lower K- and L-theory by Andrew Ranicki

Large book cover: Lower K- and L-theory

Lower K- and L-theory
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521438012
ISBN-13: 9780521438018
Number of pages: 177

Description:
This is the first treatment in book form of the applications of the lower K- and L-groups (which are the components of the Grothendieck groups of modules and quadratic forms over polynomial extension rings) to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. The author uses only elementary constructions and gives a full algebraic account of the groups involved.

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: CDBooK: Introduction to Vassiliev Knot invariantsCDBooK: Introduction to Vassiliev Knot invariants
by - Ohio State Universit
An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.
(6306 views)
Book cover: Algebraic L-theory and Topological ManifoldsAlgebraic L-theory and Topological Manifolds
by - Cambridge University Press
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.
(4527 views)
Book cover: A Geometric Approach to Differential FormsA Geometric Approach to Differential Forms
by - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(8709 views)
Book cover: Notes on String TopologyNotes on String Topology
by - arXiv
This paper is an exposition of the new subject of String Topology. We present an introduction to this exciting new area, as well as a survey of some of the latest developments, and our views about future directions of research.
(6007 views)