**Geometric Topology: Localization, Periodicity and Galois Symmetry**

by Dennis Sullivan

**Publisher**: Springer 2005**ISBN/ASIN**: 140203511X**ISBN-13**: 9781402035111**Number of pages**: 296

**Description**:

In 1970, Sullivan circulated a set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts that have had a major influence on the development of topology. The notes remain worth reading for the boldness of their ideas, the clear mastery of available structure they command, and the fresh picture they provide for geometric topology.

Download or read it online here:

**Download link**

(1.3MB, PDF)

## Similar books

**Notes on String Topology**

by

**Ralph L. Cohen, Alexander A. Voronov**-

**arXiv**

This paper is an exposition of the new subject of String Topology. We present an introduction to this exciting new area, as well as a survey of some of the latest developments, and our views about future directions of research.

(

**5500**views)

**Combinatorial Knot Theory**

by

**Louis H. Kauffman**-

**University of Illinois at Chicago**

This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.

(

**4593**views)

**Lower K- and L-theory**

by

**Andrew Ranicki**-

**Cambridge University Press**

This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.

(

**4568**views)

**Math That Makes You Go Wow**

by

**M. Boittin, E. Callahan, D. Goldberg, J. Remes**-

**Ohio State University**

This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.

(

**9178**views)