Logo

Geometric Topology: Localization, Periodicity and Galois Symmetry

Large book cover: Geometric Topology: Localization, Periodicity and Galois Symmetry

Geometric Topology: Localization, Periodicity and Galois Symmetry
by

Publisher: Springer
ISBN/ASIN: 140203511X
ISBN-13: 9781402035111
Number of pages: 296

Description:
In 1970, Sullivan circulated a set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts that have had a major influence on the development of topology. The notes remain worth reading for the boldness of their ideas, the clear mastery of available structure they command, and the fresh picture they provide for geometric topology.

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Lower K- and L-theoryLower K- and L-theory
by - Cambridge University Press
This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.
(5157 views)
Book cover: The Hauptvermutung Book: A Collection of Papers on the Topology of ManifoldsThe Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds
by - Springer
The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology.
(5025 views)
Book cover: Ends of ComplexesEnds of Complexes
by - Cambridge University Press
The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.
(4342 views)
Book cover: Unsolved Problems in Virtual Knot Theory and Combinatorial Knot TheoryUnsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory
by - arXiv
The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.
(1899 views)