Logo

Geometric Topology: Localization, Periodicity and Galois Symmetry

Large book cover: Geometric Topology: Localization, Periodicity and Galois Symmetry

Geometric Topology: Localization, Periodicity and Galois Symmetry
by

Publisher: Springer
ISBN/ASIN: 140203511X
ISBN-13: 9781402035111
Number of pages: 296

Description:
In 1970, Sullivan circulated a set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts that have had a major influence on the development of topology. The notes remain worth reading for the boldness of their ideas, the clear mastery of available structure they command, and the fresh picture they provide for geometric topology.

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: A Primer on Mapping Class GroupsA Primer on Mapping Class Groups
by - Princeton University Press
Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.
(6905 views)
Book cover: Knot Invariants and Higher Representation TheoryKnot Invariants and Higher Representation Theory
by - arXiv
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...
(3456 views)
Book cover: The Geometry and Topology of Three-ManifoldsThe Geometry and Topology of Three-Manifolds
by - Mathematical Sciences Research Institute
The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.
(13325 views)
Book cover: Knot DiagrammaticsKnot Diagrammatics
by - arXiv
This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.
(3064 views)