**Ends of Complexes**

by Bruce Hughes, Andrew Ranicki

**Publisher**: Cambridge University Press 2008**ISBN/ASIN**: 0521055199**ISBN-13**: 9780521055192**Number of pages**: 375

**Description**:

The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of certain topics in topology such as mapping tori and telescopes, often omitted from textbooks. It is thus simultaneously a research monograph and a useful reference.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**6522**views)

**Notes on String Topology**

by

**Ralph L. Cohen, Alexander A. Voronov**-

**arXiv**

This paper is an exposition of the new subject of String Topology. We present an introduction to this exciting new area, as well as a survey of some of the latest developments, and our views about future directions of research.

(

**5586**views)

**Math That Makes You Go Wow**

by

**M. Boittin, E. Callahan, D. Goldberg, J. Remes**-

**Ohio State University**

This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.

(

**9255**views)

**Surgery on Compact Manifolds**

by

**C.T.C. Wall, A. A. Ranicki**-

**American Mathematical Society**

This book represents an attempt to collect and systematize the methods and main applications of the method of surgery, insofar as compact (but not necessarily connected, simply connected or closed) manifolds are involved.

(

**4633**views)