Logo

Ends of Complexes by Bruce Hughes, Andrew Ranicki

Large book cover: Ends of Complexes

Ends of Complexes
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521055199
ISBN-13: 9780521055192
Number of pages: 375

Description:
The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of certain topics in topology such as mapping tori and telescopes, often omitted from textbooks. It is thus simultaneously a research monograph and a useful reference.

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: The Geometry and Topology of Three-ManifoldsThe Geometry and Topology of Three-Manifolds
by - Mathematical Sciences Research Institute
The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.
(12465 views)
Book cover: Math That Makes You Go WowMath That Makes You Go Wow
by - Ohio State University
This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.
(10163 views)
Book cover: The Hauptvermutung Book: A Collection of Papers on the Topology of ManifoldsThe Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds
by - Springer
The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology.
(5321 views)
Book cover: Unsolved Problems in Virtual Knot Theory and Combinatorial Knot TheoryUnsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory
by - arXiv
The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.
(2370 views)