**Nonlinear Fourier Analysis**

by Terence Tao, Christoph Thiele

**Publisher**: arXiv 2012**Number of pages**: 98

**Description**:

The nonlinear Fourier transform discussed in these notes is the map from the potential of a one dimensional discrete Dirac operator to the transmission and reflection coefficients thereof. Emphasis is on this being a nonlinear variant of the classical Fourier series, and on nonlinear analogues of classical analytic facts about Fourier series.

Download or read it online for free here:

**Download link**

(610KB, PDF)

## Similar books

**Lectures on Potential Theory**

by

**M. Brelot**-

**Tata Institute of Fundamental Research**

In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.

(

**4428**views)

**Introduction to the Theory of Fourier's Series and Integrals**

by

**H. S. Carslaw**-

**Macmillan and co.**

An introductory explanation of the theory of Fourier's series. It covers tests for uniform convergence of series, a thorough treatment of term-by-term integration and second theorem of mean value, enlarged sets of examples on infinite series, etc.

(

**1026**views)

**Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem**

by

**J. Delsarte**-

**Tata Institute of Fundamental Research**

Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.

(

**4477**views)

**Harmonic Analysis**

by

**S.R.S. Varadhan**-

**New York University**

Fourier Series of a periodic function. Fejer kernel. Convergence Properties. Convolution and Fourier Series. Heat Equation. Diagonalization of convolution operators. Fourier Transforms on Rd. Multipliers and singular integral operators. etc...

(

**5061**views)