**Nonlinear Fourier Analysis**

by Terence Tao, Christoph Thiele

**Publisher**: arXiv 2012**Number of pages**: 98

**Description**:

The nonlinear Fourier transform discussed in these notes is the map from the potential of a one dimensional discrete Dirac operator to the transmission and reflection coefficients thereof. Emphasis is on this being a nonlinear variant of the classical Fourier series, and on nonlinear analogues of classical analytic facts about Fourier series.

Download or read it online for free here:

**Download link**

(610KB, PDF)

## Similar books

**Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem**

by

**J. Delsarte**-

**Tata Institute of Fundamental Research**

Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.

(

**6307**views)

**Lectures on Potential Theory**

by

**M. Brelot**-

**Tata Institute of Fundamental Research**

In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.

(

**6291**views)

**An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics**

by

**William Elwood Byerly**-

**Ginn and company**

From the table of contents: Development in Trigonometric Series; Convergence of Fourier's Series; Solution of Problems in Physics by the Aid of Fourier's Integrals and Fourier's Series; Zonal Harmonics; Spherical Harmonics; Cylindrical Harmonics; ...

(

**13180**views)

**Harmonic Function Theory**

by

**Sheldon Axler, Paul Bourdon, Wade Ramey**-

**Springer**

A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.

(

**10975**views)