Logo

Harmonic Analysis by Russell Brown

Small book cover: Harmonic Analysis

Harmonic Analysis
by

Publisher: University of Kentucky
Number of pages: 191

Description:
These notes are intended for a course in harmonic analysis on Rn which was offered to graduate students at the University of Kentucky in Spring of 2001. The background for this course is a course in real analysis which covers measure theory and the basic facts of life related to Lp spaces.

Home page url

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: Chebyshev and Fourier Spectral MethodsChebyshev and Fourier Spectral Methods
by - Dover Publications
The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.
(15314 views)
Book cover: Nonlinear Fourier AnalysisNonlinear Fourier Analysis
by - arXiv
The nonlinear Fourier transform is the map from the potential of a one dimensional discrete Dirac operator to the transmission and reflection coefficients thereof. Emphasis is on this being a nonlinear variant of the classical Fourier series.
(6200 views)
Book cover: Lectures on Topics in Mean Periodic Functions and the Two-Radius TheoremLectures on Topics in Mean Periodic Functions and the Two-Radius Theorem
by - Tata Institute of Fundamental Research
Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.
(5961 views)
Book cover: Linear Partial Differential Equations and Fourier TheoryLinear Partial Differential Equations and Fourier Theory
by - Cambridge University Press
Textbook for an introductory course on linear partial differential equations and boundary value problems. It also provides introduction to basic Fourier analysis and functional analysis. Written for third-year undergraduates in mathematical sciences.
(24647 views)