Mathematical Theory of Scattering Resonances
by Semyon Dyatlov, Maciej Zworski
Publisher: MIT 2018
Number of pages: 640
Description:
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; Chaotic scattering; etc.
Download or read it online for free here:
Download link
(12MB, PDF)
Similar books

by R. E. Showalter - Pitman
Written for beginning graduate students of mathematics, engineering, and the physical sciences. It covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, etc.
(15597 views)

by Valeriy Serov - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
(13072 views)

by Robert Piche, Keijo Ruohonen - Tampere University of Technology
The course presents the basic theory and solution techniques for the partial differential equation problems most commonly encountered in science. The student is assumed to know something about linear algebra and ordinary differential equations.
(8583 views)

by Richard S. Laugesen - arXiv
This text aims at highlights of spectral theory for self-adjoint partial differential operators, with an emphasis on problems with discrete spectrum. The course aims to develop your mental map of spectral theory in partial differential equations.
(9396 views)