Logo

Mathematical Theory of Scattering Resonances

Small book cover: Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances
by

Publisher: MIT
Number of pages: 640

Description:
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; Chaotic scattering; etc.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Lectures on Partial Differential EquationsLectures on Partial Differential Equations
by - Tata Institute of Fundamental Research
The purpose of this course was to introduce students to the applications of Fourier analysis -- by which I mean the study of convolution operators as well as the Fourier transform itself -- to partial differential equations.
(6206 views)
Book cover: Introduction to the Numerical Integration of PDEsIntroduction to the Numerical Integration of PDEs
by - University of Durham
In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.
(9475 views)
Book cover: Introduction to Partial Differential EquationsIntroduction to Partial Differential Equations
by - UCSB
The author develops the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. He presents some of the mathematics that can be used to describe the vibrating circular membrane.
(10114 views)
Book cover: Partial Differential Equations for FinancePartial Differential Equations for Finance
by - New York University
An introduction to those aspects of partial differential equations and optimal control most relevant to finance: PDE’s naturally associated to diffusion processes, Kolmogorov equations and their applications, linear parabolic equations, etc.
(18390 views)