Mathematical Theory of Scattering Resonances

Small book cover: Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances

Publisher: MIT
Number of pages: 640

Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; Chaotic scattering; etc.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Hilbert Space Methods for Partial Differential EquationsHilbert Space Methods for Partial Differential Equations
by - Pitman
Written for beginning graduate students of mathematics, engineering, and the physical sciences. It covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, etc.
Book cover: Introduction to Partial Differential EquationsIntroduction to Partial Differential Equations
by - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
Book cover: Partial Differential Equations with MaplePartial Differential Equations with Maple
by - Tampere University of Technology
The course presents the basic theory and solution techniques for the partial differential equation problems most commonly encountered in science. The student is assumed to know something about linear algebra and ordinary differential equations.
Book cover: Spectral Theory of Partial Differential EquationsSpectral Theory of Partial Differential Equations
by - arXiv
This text aims at highlights of spectral theory for self-adjoint partial differential operators, with an emphasis on problems with discrete spectrum. The course aims to develop your mental map of spectral theory in partial differential equations.