Logo

Contributions to Fourier Analysis

Large book cover: Contributions to Fourier Analysis

Contributions to Fourier Analysis
by

Publisher: Princeton University Press
ISBN/ASIN: 0691079307
Number of pages: 207

Description:
In the theory of convergence and summability, whether for ordinary Fourier series or other expansions, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Lectures on Harmonic AnalysisLectures on Harmonic Analysis
by - American Mathematical Society
An inside look at the techniques used and developed by the author. The book is based on a graduate course on Fourier analysis he taught at Caltech. It demonstrates how harmonic analysis can provide penetrating insights into deep aspects of analysis.
(5369 views)
Book cover: Harmonic Function TheoryHarmonic Function Theory
by - Springer
A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.
(8892 views)
Book cover: Lectures on Potential TheoryLectures on Potential Theory
by - Tata Institute of Fundamental Research
In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.
(4343 views)
Book cover: Spherical Harmonics in p DimensionsSpherical Harmonics in p Dimensions
by - arXiv
The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to physics or mathematics undergraduates.
(4359 views)