**Contributions to Fourier Analysis**

by A. Zygmund, et al.

**Publisher**: Princeton University Press 1950**ISBN/ASIN**: 0691079307**Number of pages**: 207

**Description**:

In the theory of convergence and summability, whether for ordinary Fourier series or other expansions, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Lectures on Mean Periodic Functions**

by

**J.P. Kahane**-

**Tata Institute of Fundamental Research**

Mean periodic functions are a generalization of periodic functions. The book considers questions such as Fourier-series, harmonic analysis, the problems of uniqueness, approximation and quasi-analyticity, as problems on mean periodic functions.

(

**5946**views)

**Introduction to the Theory of Fourier's Series and Integrals**

by

**H. S. Carslaw**-

**Macmillan and co.**

An introductory explanation of the theory of Fourier's series. It covers tests for uniform convergence of series, a thorough treatment of term-by-term integration and second theorem of mean value, enlarged sets of examples on infinite series, etc.

(

**2469**views)

**Spherical Harmonics in p Dimensions**

by

**Christopher Frye, Costas J. Efthimiou**-

**arXiv**

The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to physics or mathematics undergraduates.

(

**5712**views)

**Linear Partial Differential Equations and Fourier Theory**

by

**Marcus Pivato**-

**Cambridge University Press**

Textbook for an introductory course on linear partial differential equations and boundary value problems. It also provides introduction to basic Fourier analysis and functional analysis. Written for third-year undergraduates in mathematical sciences.

(

**24201**views)