Logo

Lectures on Harmonic Analysis

Large book cover: Lectures on Harmonic Analysis

Lectures on Harmonic Analysis
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821834495
ISBN-13: 9780821834497
Number of pages: 85

Description:
This book provides an inside look at the techniques used and developed by Wolff. It is based on a graduate course on Fourier analysis he taught at Caltech. The book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis.

Home page url

Download or read it online for free here:
Download link
(840KB, PDF)

Similar books

Book cover: Lectures on Potential TheoryLectures on Potential Theory
by - Tata Institute of Fundamental Research
In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.
(4567 views)
Book cover: Real Harmonic AnalysisReal Harmonic Analysis
by - ANU eView
This book presents the material covered in graduate lectures delivered in 2010. Moving from the classical periodic setting to the real line, then to, nowadays, sets with minimal structures, the theory has reached a high level of applicability.
(616 views)
Book cover: Harmonic Function TheoryHarmonic Function Theory
by - Springer
A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.
(9167 views)
Book cover: Lectures on Topics in Mean Periodic Functions and the Two-Radius TheoremLectures on Topics in Mean Periodic Functions and the Two-Radius Theorem
by - Tata Institute of Fundamental Research
Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.
(4621 views)