**C*-algebras**

by John Erdos

**Publisher**: King's College, London 2003**Number of pages**: 51

**Description**:

These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory: the C*-algebra approach to the spectral theorem for bounded normal operators on Hilbert space and a brief introduction to the ideas of abstract harmonic analysis.

*This document is no more available for free.*

## Similar books

**Banach Modules and Functors on Categories of Banach Spaces**

by

**J. Cigler, V. Losert, P.W. Michor**-

**Marcel Dekker Inc**

This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.

(

**5446**views)

**Functional Analysis with Applications**

by

**Palle Jorgensen, Feng Tian**-

**arXiv**

This book at the beginning graduate level will help students with primary interests elsewhere to acquire a facility with tools of a functional analytic flavor, say in harmonic analysis, numerical analysis, stochastic processes, or in physics.

(

**5668**views)

**Fredholm Operators and Spectral Flow**

by

**Nils Waterstraat**-

**arXiv**

Fredholm operators are one of the most important classes of linear operators in mathematics. The aim of these notes is an essentially self-contained introduction to the spectral flow for paths of (generally unbounded) selfadjoint Fredholm operators.

(

**2417**views)

**Lectures On Some Fixed Point Theorems Of Functional Analysis**

by

**F.F. Bonsall**-

**Tata Institute Of Fundamental Research**

The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. Author was interested in the construction of eigenvectors and eigenvalues.

(

**5801**views)