**C*-algebras**

by John Erdos

**Publisher**: King's College, London 2003**Number of pages**: 51

**Description**:

These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory: the C*-algebra approach to the spectral theorem for bounded normal operators on Hilbert space and a brief introduction to the ideas of abstract harmonic analysis.

*This document is no more available for free.*

## Similar books

**Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics**

by

**N.P. Landsman**-

**arXiv**

A graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization.

(

**9156**views)

**Distribution Theory (Generalized Functions)**

by

**Ivan F Wilde**

From the table of contents: Introduction; The spaces S and S'; The spaces D and D'; The Fourier transform; Convolution; Fourier-Laplace Transform; Structure Theorem for Distributions; Partial Differential Equations; and more.

(

**7692**views)

**Operator Algebras and Quantum Statistical Mechanics**

by

**Ola Bratteli, Derek W. Robinson**-

**Springer**

These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications.

(

**14601**views)

**Functional Analysis**

by

**Feng Tian, Palle E.T. Jorgensen**-

**arXiv**

Notes from a course which covered themes in functional analysis and operator theory, with an emphasis on topics of special relevance to such applications as representation theory, harmonic analysis, mathematical physics, and stochastic integration.

(

**8381**views)