C*-algebras by John Erdos


by John Erdos

Publisher: King's College, London 2003
Number of pages: 51

These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory: the C*-algebra approach to the spectral theorem for bounded normal operators on Hilbert space and a brief introduction to the ideas of abstract harmonic analysis.

This document is no more available for free.

Similar books

Lectures on Cyclic HomologyLectures on Cyclic Homology
by D. Husemoller - Tata Institute of Fundamental Research
Contents: Exact Couples and the Connes Exact Couple; Abelianization and Hochschild Homology; Cyclic Homology and the Connes Exact Couple; Cyclic Homology and Lie Algebra Homology; Mixed Complexes, the Connes Operator B; and more.
Nonlinear Functional AnalysisNonlinear Functional Analysis
by Gerald Teschl - University of Vienna
This manuscript provides a brief introduction to nonlinear functional analysis. As an application we consider partial differential equations and prove existence and uniqueness for solutions of the stationary Navier-Stokes equation.
Spectral TheorySpectral Theory
by Leif Mejlbro - BookBoon
Spectral Theory - Functional Analysis Examples. Contents: Spectrum and resolvent; The adjoint of a bounded operator; Self adjoint operator; Isometric operators; Unitary and normal operators; Positive operators and projections; Compact operators.
Operators on Hilbert SpaceOperators on Hilbert Space
by John Erdos - King's College London
These are notes for a King's College course to fourth year undergraduates and MSc students. They cover the theoretical development of operators on Hilbert space up to the spectral theorem for bounded selfadjoint operators.