**C*-algebras**

by John Erdos

**Publisher**: King's College, London 2003**Number of pages**: 51

**Description**:

These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory: the C*-algebra approach to the spectral theorem for bounded normal operators on Hilbert space and a brief introduction to the ideas of abstract harmonic analysis.

*This document is no more available for free.*

## Similar books

**Hilbert Spaces and Operators on Hilbert Spaces**

by

**Leif Mejlbro**-

**BookBoon**

Functional analysis examples. From the table of contents: Hilbert spaces; Fourier series; Construction of Hilbert spaces; Orthogonal projections and complements; Weak convergence; Operators on Hilbert spaces, general; Closed operations.

(

**7226**views)

**Topics in Real and Functional Analysis**

by

**Gerald Teschl**-

**Universitaet Wien**

This manuscript provides a brief introduction to Real and (linear and nonlinear) Functional Analysis. It covers basic Hilbert and Banach space theory as well as basic measure theory including Lebesgue spaces and the Fourier transform.

(

**8813**views)

**Functional Analysis**

by

**Alexander C. R. Belton**-

**Lancaster University**

These lecture notes are an expanded version of a set written for a course given to final-year undergraduates at the University of Oxford. A thorough understanding of Banach and Hilbert spaces is a prerequisite for this material.

(

**6462**views)

**Functional Analysis Lecture Notes**

by

**T.B. Ward**-

**University of East Anglia**

Lecture notes for a 3rd year undergraduate course in functional analysis. By the end of the course, you should have a good understanding of normed vector spaces, Hilbert and Banach spaces, fixed point theorems and examples of function spaces.

(

**6006**views)