Logo

C*-algebras by John Erdos

Small book cover: C*-algebras

C*-algebras
by

Publisher: King's College, London
Number of pages: 51

Description:
These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory: the C*-algebra approach to the spectral theorem for bounded normal operators on Hilbert space and a brief introduction to the ideas of abstract harmonic analysis.

This document is no more available for free.

Similar books

Book cover: Banach Modules and Functors on Categories of Banach SpacesBanach Modules and Functors on Categories of Banach Spaces
by - Marcel Dekker Inc
This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.
(5446 views)
Book cover: Functional Analysis with ApplicationsFunctional Analysis with Applications
by - arXiv
This book at the beginning graduate level will help students with primary interests elsewhere to acquire a facility with tools of a functional analytic flavor, say in harmonic analysis, numerical analysis, stochastic processes, or in physics.
(5668 views)
Book cover: Fredholm Operators and Spectral FlowFredholm Operators and Spectral Flow
by - arXiv
Fredholm operators are one of the most important classes of linear operators in mathematics. The aim of these notes is an essentially self-contained introduction to the spectral flow for paths of (generally unbounded) selfadjoint Fredholm operators.
(2417 views)
Book cover: Lectures On Some Fixed Point Theorems Of Functional AnalysisLectures On Some Fixed Point Theorems Of Functional Analysis
by - Tata Institute Of Fundamental Research
The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. Author was interested in the construction of eigenvectors and eigenvalues.
(5801 views)