Logo

Lectures on Curves on Rational and Unirational Surfaces

Small book cover: Lectures on Curves on Rational and Unirational Surfaces

Lectures on Curves on Rational and Unirational Surfaces
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: 3540089438
ISBN-13: 9783540089438
Number of pages: 267

Description:
From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.

Download or read it online for free here:
Download link
(2.6MB, PDF)

Similar books

Book cover: Strings and GeometryStrings and Geometry
by - American Mathematical Society
This volume highlights the interface between string theory and algebraic geometry. The topics covered include manifolds of special holonomy, supergravity, supersymmetry, D-branes, the McKay correspondence and the Fourier-Mukai transform.
(8462 views)
Book cover: Mirror SymmetryMirror Symmetry
by - American Mathematical Society
The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.
(7908 views)
Book cover: Introduction To Algebraical GeometryIntroduction To Algebraical Geometry
by - Oxford University Press
The author's aim has been to produce a book suitable to the beginner who wishes to acquire a sound knowledge of the more elementary parts of the subject, and also sufficient for the candidate for a mathematical scholarship.
(1854 views)
Book cover: Lectures On Old And New Results On Algebraic CurvesLectures On Old And New Results On Algebraic Curves
by - Tata Institute Of Fundamental Research
The aim of this text is to give a proof, due to Hans Grauert, of an analogue of Mordell's conjecture. Contents: Introduction; Algebro-Geometric Background; Algebraic Curves; The Theorem of Grauert (Mordell's conjecture for function fields).
(5320 views)