**Surgical Methods in Rigidity**

by F.T. Farrell

**Publisher**: Springer 1996**ISBN/ASIN**: 3540589775**ISBN-13**: 9783540589778**Number of pages**: 108

**Description**:

This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite to this result. It is intended for researchers and advanced graduate students in both differential geometry and topology.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**Lectures on Polyhedral Topology**

by

**John R. Stallings**-

**Tata Institute of Fundamental Research**

These notes contain: The elementary theory of finite polyhedra in real vector spaces; A theory of 'general position' (approximation of maps), based on 'non-degeneracy'. A theory of 'regular neighbourhoods' in arbitrary polyhedra; etc.

(

**5518**views)

**Geometric Topology: Localization, Periodicity and Galois Symmetry**

by

**Dennis Sullivan**-

**Springer**

In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.

(

**5666**views)

**Foliations and the Geometry of 3-manifolds**

by

**Danny Calegari**-

**Oxford University Press**

The book gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.

(

**8774**views)

**Notes on Basic 3-Manifold Topology**

by

**Allen Hatcher**

These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.

(

**6750**views)