**Surgical Methods in Rigidity**

by F.T. Farrell

**Publisher**: Springer 1996**ISBN/ASIN**: 3540589775**ISBN-13**: 9783540589778**Number of pages**: 108

**Description**:

This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite to this result. It is intended for researchers and advanced graduate students in both differential geometry and topology.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**Lectures on the Geometry of Manifolds**

by

**Liviu I. Nicolaescu**-

**World Scientific Publishing Company**

An introduction to the most frequently used techniques in modern global geometry. Suited to the beginning graduate student, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.

(

**7407**views)

**Algebraic and Geometric Topology**

by

**Andrew Ranicki, Norman Levitt, Frank Quinn**-

**Springer**

The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

(

**10730**views)

**Lower K- and L-theory**

by

**Andrew Ranicki**-

**Cambridge University Press**

This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.

(

**5450**views)

**Algebraic L-theory and Topological Manifolds**

by

**A. A. Ranicki**-

**Cambridge University Press**

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.

(

**4758**views)