Logo

Surgical Methods in Rigidity

Large book cover: Surgical Methods in Rigidity

Surgical Methods in Rigidity
by

Publisher: Springer
ISBN/ASIN: 3540589775
ISBN-13: 9783540589778
Number of pages: 108

Description:
This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite to this result. It is intended for researchers and advanced graduate students in both differential geometry and topology.

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: Notes on Basic 3-Manifold TopologyNotes on Basic 3-Manifold Topology
by
These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.
(5513 views)
Book cover: CDBooK: Introduction to Vassiliev Knot invariantsCDBooK: Introduction to Vassiliev Knot invariants
by - Ohio State Universit
An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.
(6434 views)
Book cover: An Introduction to High Dimensional KnotsAn Introduction to High Dimensional Knots
by - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
(2067 views)
Book cover: Lower K- and L-theoryLower K- and L-theory
by - Cambridge University Press
This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.
(5328 views)