**Mixed Motives**

by Marc Levine

**Publisher**: American Mathematical Society 1998**ISBN/ASIN**: 0821807854**ISBN-13**: 9780821807859**Number of pages**: 523

**Description**:

This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry. The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. Most of the classical constructions of cohomology are described in the motivic setting.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**Abel's Theorem and the Allied Theory**

by

**H.F. Baker**-

**Cambridge University Press**

This classic book covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today.

(

**3149**views)

**Current Topics in Complex Algebraic Geometry**

by

**Herbert Clemens, János Kollár**-

**Cambridge University Press**

The 1992/93 year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change.

(

**9980**views)

**Introduction to Projective Varieties**

by

**Enrique Arrondo**-

**Universidad Complutense de Madrid**

The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained 'by hand'.

(

**5736**views)

**An Introduction to Complex Algebraic Geometry**

by

**Chris Peters**-

**Institut Fourier Grenoble**

This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.

(

**6290**views)