**Mixed Motives**

by Marc Levine

**Publisher**: American Mathematical Society 1998**ISBN/ASIN**: 0821807854**ISBN-13**: 9780821807859**Number of pages**: 523

**Description**:

This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry. The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. Most of the classical constructions of cohomology are described in the motivic setting.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**Lectures on Deformations of Singularities**

by

**Michael Artin**-

**Tata Institute of Fundamental Research**

These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.

(

**4183**views)

**Introduction to Algebraic Geometry**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology Bombay**

This text is a brief introduction to algebraic geometry. We will focus mainly on two basic results in algebraic geometry, known as Bezout's Theorem and Hilbert's Nullstellensatz, as generalizations of the Fundamental Theorem of Algebra.

(

**4246**views)

**Lectures on Algebraic Groups**

by

**Alexander Kleshchev**-

**University of Oregon**

Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.

(

**6389**views)

**Current Developments in Algebraic Geometry**

by

**Lucia Caporaso, et al.**-

**Cambridge University Press**

An introductory panorama of current progress in the field, addressed to both beginners and experts. This volume offers expository overviews of the state of the art in many areas of algebraic geometry. Prerequisites are kept to a minimum ...

(

**2036**views)