**Mixed Motives**

by Marc Levine

**Publisher**: American Mathematical Society 1998**ISBN/ASIN**: 0821807854**ISBN-13**: 9780821807859**Number of pages**: 523

**Description**:

This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry. The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. Most of the classical constructions of cohomology are described in the motivic setting.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**Lectures on Torus Embeddings and Applications**

by

**Tadao Oda**-

**Tata Institute of Fundamental Research**

Theory of torus embeddings has find many applications. The point of the theory lies in its ability of translating meaningful algebra-geometric phenomena into very simple statements about the combinatorics of cones in affine space over the reals.

(

**4587**views)

**Abel's Theorem and the Allied Theory**

by

**H.F. Baker**-

**Cambridge University Press**

This classic book covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today.

(

**2401**views)

**Computations in Algebraic Geometry with Macaulay 2**

by

**D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels**-

**Springer**

This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out.

(

**6316**views)

**Lectures on Curves on Rational and Unirational Surfaces**

by

**Masayoshi Miyanishi**-

**Tata Institute of Fundamental Research**

From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.

(

**4326**views)