Logo

Mixed Motives by Marc Levine

Large book cover: Mixed Motives

Mixed Motives
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821807854
ISBN-13: 9780821807859
Number of pages: 523

Description:
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry. The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. Most of the classical constructions of cohomology are described in the motivic setting.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: Homogeneous Spaces and Equivariant EmbeddingsHomogeneous Spaces and Equivariant Embeddings
by - arXiv
A monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, the other are cited with references to the original papers. The style is intermediate between survey and detailed monograph.
(9277 views)
Book cover: Introduction to Algebraic GeometryIntroduction to Algebraic Geometry
by
From the table of contents: Affine Varieties; Ideals and varieties. Hilbert's Basis Theorem. Regular functions and regular mappings. Projective and Abstract Varieties; Dimension Theory; Regular and singular points; Intersection theory.
(9572 views)
Book cover: Lectures on Siegel's Modular FunctionsLectures on Siegel's Modular Functions
by - Tata Institute of Fundamental Research
Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.
(8882 views)
Book cover: Introduction to Projective VarietiesIntroduction to Projective Varieties
by - Universidad Complutense de Madrid
The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained 'by hand'.
(7912 views)