Logo

Notes on Combinatorics by Peter J. Cameron

Small book cover: Notes on Combinatorics

Notes on Combinatorics
by

Publisher: Queen Mary, University of London
Number of pages: 130

Description:
Contents: Subsets and binomial coefficients; Selections and arrangements; Power series; Recurrence relations; Partitions and permutations; The Principle of Inclusion and Exclusion; Families of sets; Systems of distinct representatives; Latin squares; Steiner triple systems.

Home page url

Download or read it online for free here:
Download link
(440KB, PDF)

Similar books

Book cover: Algebraic and Geometric Methods in Enumerative CombinatoricsAlgebraic and Geometric Methods in Enumerative Combinatorics
by - arXiv
The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.
(3010 views)
Book cover: Combinatorial Geometry with Application to Field TheoryCombinatorial Geometry with Application to Field Theory
by - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
(9771 views)
Book cover: Combinatorial Maps: TutorialCombinatorial Maps: Tutorial
by - Latvian University
Contents: Permutations; Combinatorial maps; The correspondence between combinatorial maps and graphs on surfaces; Map's mirror reflection and dual map; Multiplication of combinatorial maps; Normalized combinatorial maps; Geometrical interpretation...
(2716 views)
Book cover: An  Introduction to Combinatorics and Graph TheoryAn Introduction to Combinatorics and Graph Theory
by - Whitman College
The book covers the classic parts of Combinatorics and graph theory, with some recent progress in the area. Contents: Fundamentals; Inclusion-Exclusion; Generating Functions; Systems of Distinct Representatives; Graph Theory; Polya-Redfield Counting.
(1737 views)