Logo

Categories and Homological Algebra

Small book cover: Categories and Homological Algebra

Categories and Homological Algebra
by

Publisher: UPMC
Number of pages: 125

Description:
The aim of these notes is to introduce the reader to the language of categories and to present the basic notions of homological algebra, first from an elementary point of view, with the notion of derived functors, next with a more sophisticated approach, with the introduction of triangulated and derived categories.

Home page url

Download or read it online for free here:
Download link
(630KB, PDF)

Similar books

Book cover: Category Theory: A Gentle IntroductionCategory Theory: A Gentle Introduction
by - Logic Matters
I hope that what is here may prove useful to others starting to get to grips with category theory. This text is intended to be relatively accessible; in particular, it presupposes rather less mathematical background than some texts on categories.
(2395 views)
Book cover: Combinatorics and Algebra of Tensor CalculusCombinatorics and Algebra of Tensor Calculus
by - arXiv
In this paper, we reveal the combinatorial nature of tensor calculus for strict tensor categories and show that there exists a monad which is described by the coarse-graining of graphs and characterizes the algebraic nature of tensor calculus.
(2283 views)
Book cover: Higher Topos TheoryHigher Topos Theory
by - Princeton University Press
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
(7049 views)
Book cover: Seven Sketches in Compositionality: An Invitation to Applied Category TheorySeven Sketches in Compositionality: An Invitation to Applied Category Theory
by - arXiv.org
This book is an invitation to discover advanced topics in category theory through concrete, real-world examples. The tour takes place over seven sketches, such as databases, electric circuits, etc, with the exploration of a categorical structure.
(1048 views)