Categories and Homological Algebra
by Pierre Schapira
Publisher: UPMC 2011
Number of pages: 125
Description:
The aim of these notes is to introduce the reader to the language of categories and to present the basic notions of homological algebra, first from an elementary point of view, with the notion of derived functors, next with a more sophisticated approach, with the introduction of triangulated and derived categories.
Download or read it online for free here:
Download link
(630KB, PDF)
Similar books

by Max Kelly - Cambridge University Press
The book presents a selfcontained account of basic category theory, assuming as prior knowledge only the most elementary categorical concepts. It is designed to supply a connected account of the theory, or at least of a substantial part of it.
(11868 views)

by Maarten M. Fokkinga - University of Twente
These notes present the important notions from category theory. The intention is to provide a fairly good skill in manipulating with those concepts formally. This text introduces category theory in the calculational style of the proofs.
(17362 views)

by Peter Freyd - Harper and Row
From the table of contents: Fundamentals (Contravariant functors and dual categories); Fundamentals of Abelian categories; Special functors and subcategories; Metatheorems; Functor categories; Injective envelopes; Embedding theorems.
(11810 views)

by David I. Spivak - The MIT Press
This book shows that category theory can be useful outside of mathematics as a flexible modeling language throughout the sciences. Written in an engaging and straightforward style, the book is rigorous but accessible to non-mathematicians.
(5582 views)