Logo

An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity

Small book cover: An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity

An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity
by


Number of pages: 272

Description:
Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).

Download or read it online for free here:
Download link
(1.9MB, PDF)

Similar books

Book cover: Riemannian Geometry: Definitions, Pictures, and ResultsRiemannian Geometry: Definitions, Pictures, and Results
by - arXiv
A pedagogical but concise overview of Riemannian geometry is provided in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions and relevant theorems.
(1821 views)
Book cover: Riemann Surfaces, Dynamics and GeometryRiemann Surfaces, Dynamics and Geometry
by - Harvard University
This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.
(9334 views)
Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(4078 views)
Book cover: Riemannian GeometryRiemannian Geometry
by - arXiv
These notes on Riemannian geometry use the bases bundle and frame bundle, as in Geometry of Manifolds, to express the geometric structures. It starts with the definition of Riemannian and semi-Riemannian structures on manifolds.
(3531 views)