Logo

An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity

Small book cover: An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity

An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity
by


Number of pages: 272

Description:
Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).

Download or read it online for free here:
Download link
(1.9MB, PDF)

Similar books

Book cover: Lectures notes on compact Riemann surfacesLectures notes on compact Riemann surfaces
by - arXiv.org
An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
(710 views)
Book cover: Semi-Riemann Geometry and General RelativitySemi-Riemann Geometry and General Relativity
by
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(12766 views)
Book cover: A Panoramic View of Riemannian GeometryA Panoramic View of Riemannian Geometry
by - Springer
In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.
(6961 views)
Book cover: Riemannian Geometry: Definitions, Pictures, and ResultsRiemannian Geometry: Definitions, Pictures, and Results
by - arXiv
A pedagogical but concise overview of Riemannian geometry is provided in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions and relevant theorems.
(1999 views)