Logo

Non-Euclidean Geometry: A Critical and Historical Study of its Development

Large book cover: Non-Euclidean Geometry: A Critical and Historical Study of its Development

Non-Euclidean Geometry: A Critical and Historical Study of its Development
by

Publisher: Open Court Publishing Company
ISBN/ASIN: 0486600270
Number of pages: 292

Description:
Examines various attempts to prove Euclid's parallel postulate - by the Greeks, Arabs and Renaissance mathematicians. Ranging through the 17th, 18th, and 19th centuries, it considers forerunners and founders such as Saccheri, Lambert, Legendre, W. Bolyai, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Hyperbolic GeometryHyperbolic Geometry
by - MSRI
These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They develop a number of the properties that are particularly important in topology and group theory.
(4309 views)
Book cover: The Elements of Non-Euclidean Plane Geometry and TrigonometryThe Elements of Non-Euclidean Plane Geometry and Trigonometry
by - Longmans, Green and co.
In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.
(4310 views)
Book cover: The Elements of Non-Euclidean GeometryThe Elements of Non-Euclidean Geometry
by - G.Bell & Sons Ltd.
Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations.
(5165 views)
Book cover: The Eightfold Way: The Beauty of Klein's Quartic CurveThe Eightfold Way: The Beauty of Klein's Quartic Curve
by - Cambridge University Press
Felix Klein discovered in 1879 that the surface that we now call the Klein quartic has many remarkable properties, including an incredible 336-fold symmetry. This volume explores the rich tangle of properties surrounding this multiform object.
(8056 views)