**The Elements of Non-Euclidean Plane Geometry and Trigonometry**

by Horatio Scott Carslaw

**Publisher**: Longmans, Green and co. 1916**ISBN/ASIN**: B0068QLCSE**Number of pages**: 202

**Description**:

In this little book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.

Download or read it online for free here:

**Download link**

(multiple formats)

Download mirrors:**Mirror 1**

## Similar books

**Geometry with an Introduction to Cosmic Topology**

by

**Mike Hitchman**

This text develops non-Euclidean geometry and geometry on surfaces at a level appropriate for undergraduate students who completed a multivariable calculus course and are ready to practice habits of thought needed in advanced undergraduate courses.

(

**2648**views)

**Non-Euclidean Geometry**

by

**Henry Manning**-

**Ginn and Company**

This book gives a simple and direct account of the Non-Euclidean Geometry, and one which presupposes but little knowledge of Mathematics. The entire book can be read by one who has taken the mathematical courses commonly given in our colleges.

(

**10362**views)

**Hyperbolic Geometry**

by

**J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry**-

**MSRI**

These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They develop a number of the properties that are particularly important in topology and group theory.

(

**5812**views)

**The Eightfold Way: The Beauty of Klein's Quartic Curve**

by

**Silvio Levy**-

**Cambridge University Press**

Felix Klein discovered in 1879 that the surface that we now call the Klein quartic has many remarkable properties, including an incredible 336-fold symmetry. This volume explores the rich tangle of properties surrounding this multiform object.

(

**9415**views)