**The Elements Of Non-Euclidean Geometry**

by Julian Lowell Coolidge

**Publisher**: Oxford At The Clarendon Press 1909**ISBN/ASIN**: 1603861491**Number of pages**: 282

**Description**:

Chapters Include: Foundation For Metrical Geometry In A Limited Region; Congruent Transformations; The Three Hypotheses; The Introduction Of Trigonometric Formulae; Analytic Formulae; Consistency And Significance Of The Axioms; The Geometric And Analytic Extension Of Space; The Groups Of Congruent Transformations; Point, Line, And Plane Treated Analytically; The Higher Line Geometry; The Circle And The Sphere; Conic Sections; Quadric Surfaces; Areas And Volumes; Introduction To Differential Geometry; etc.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems**

by

**John William Withers**-

**Open Court Publishing Co.**

The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...

(

**2372**views)

**Non-Euclidean Geometry**

by

**Henry Manning**-

**Ginn and Company**

This book gives a simple and direct account of the Non-Euclidean Geometry, and one which presupposes but little knowledge of Mathematics. The entire book can be read by one who has taken the mathematical courses commonly given in our colleges.

(

**8859**views)

**The Elements of Non-Euclidean Plane Geometry and Trigonometry**

by

**Horatio Scott Carslaw**-

**Longmans, Green and co.**

In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.

(

**4384**views)

**The Eightfold Way: The Beauty of Klein's Quartic Curve**

by

**Silvio Levy**-

**Cambridge University Press**

Felix Klein discovered in 1879 that the surface that we now call the Klein quartic has many remarkable properties, including an incredible 336-fold symmetry. This volume explores the rich tangle of properties surrounding this multiform object.

(

**8118**views)