**An Introduction to Tensors for Students of Physics and Engineering**

by Joseph C. Kolecki

**Publisher**: Glenn Research Center 2002**Number of pages**: 29

**Description**:

The book is intended to serve as a bridge from the point where most undergraduate students 'leave off' in their studies of mathematics to the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and similar higher-order vector products.

Download or read it online for free here:

**Download link**

(330KB, PDF)

## Similar books

**Functional and Structured Tensor Analysis for Engineers**

by

**R. M. Brannon**-

**The University of Utah**

A step-by-step introduction to tensor analysis that assumes you know nothing but basic calculus. Considerable emphasis is placed on a notation style that works well for applications in materials modeling, but other notation styles are also reviewed.

(

**17066**views)

**Tensor Calculus**

by

**Taha Sochi**-

**viXra**

These notes are the second part of the tensor calculus documents. In this text we continue the discussion of selected topics of the subject at a higher level expanding, when necessary, some topics and developing further concepts and techniques.

(

**10614**views)

**Introduction to Tensor Calculus**

by

**Taha Sochi**-

**arXiv**

These are general notes on tensor calculus which can be used as a reference for an introductory course on tensor algebra and calculus. A basic knowledge of calculus and linear algebra with some commonly used mathematical terminology is presumed.

(

**8459**views)

**Symbolic Tensor Calculus on Manifolds: a SageMath Implementation**

by

**Eric Gourgoulhon, Marco Mancini**-

**arXiv.org**

These lecture notes present a method for symbolic tensor calculus that runs on fully specified smooth manifolds (described by an atlas), that is not limited to a single coordinate chart or vector frame, and runs even on non-parallelizable manifolds.

(

**5838**views)