**Tensor Analysis**

by Edward Nelson

**Publisher**: Princeton Univ Pr 1974**ISBN/ASIN**: 0691080461**ISBN-13**: 9780691080468**Number of pages**: 138

**Description**:

These are the lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.

Download or read it online for free here:

**Download link**

(3.2MB, PDF)

## Similar books

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**17739**views)

**Differentiable Manifolds**

by

**Nigel Hitchin**

The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.

(

**13832**views)

**Course of Differential Geometry**

by

**Ruslan Sharipov**-

**Samizdat Press**

Textbook for the first course of differential geometry. It covers the theory of curves in three-dimensional Euclidean space, the vectorial analysis both in Cartesian and curvilinear coordinates, and the theory of surfaces in the space E.

(

**11907**views)

**Differential Geometry: A First Course in Curves and Surfaces**

by

**Theodore Shifrin**-

**University of Georgia**

Contents: Curves (Examples, Arclength Parametrization, Frenet Frame); Surfaces: Local Theory (Parametrized Surfaces, Gauss Map, Covariant Differentiation, Parallel Translation, Geodesics); Surfaces: Further Topics (Holonomy, Hyperbolic Geometry,...).

(

**3628**views)