Tensor Analysis
by Edward Nelson
Publisher: Princeton Univ Pr 1974
ISBN/ASIN: 0691080461
ISBN-13: 9780691080468
Number of pages: 138
Description:
These are the lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.
Download or read it online for free here:
Download link
(3.2MB, PDF)
Similar books

by Balazs Csikos - Eötvös Loránd University
Contents: Basic Structures on Rn, Length of Curves; Curvatures of a Curve; Plane Curves; 3D Curves; Hypersurfaces; Surfaces in 3-dimensional space; Fundamental equations of hypersurface theory; Topological and Differentiable Manifolds; etc.
(9954 views)

by C.E. Weatherburn - Cambridge University Press
The book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.
(6416 views)

by Stefan Waner
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(19133 views)

by Peter W. Michor - American Mathematical Society
Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.
(9036 views)