**Geometric Complexity Theory: An Introduction for Geometers**

by J.M. Landsberg

**Publisher**: arXiv 2013**Number of pages**: 38

**Description**:

This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory (GCT). The article is written to be accessible to graduate students. Numerous open questions in algebraic geometry and representation theory relevant for GCT are presented.

Download or read it online for free here:

**Download link**

(440KB, PDF)

## Similar books

**Abelian Varieties**

by

**J. S. Milne**

Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.

(

**10938**views)

**Lectures on An Introduction to Grothendieck's Theory of the Fundamental Group**

by

**J.P. Murre**-

**Tata Institute of Fundamental Research**

The purpose of this text is to give an introduction to Grothendieck's theory of the fundamental group in algebraic geometry with the study of the fundamental group of an algebraic curve over an algebraically closed field of arbitrary characteristic.

(

**7863**views)

**Lectures on the topological recursion for Higgs bundles and quantum curves**

by

**Olivia Dumitrescu, Motohico Mulase**-

**arXiv**

The paper aims at giving an introduction to the notion of quantum curves. The main purpose is to describe the discovery of the relation between the topological recursion and the quantization of Hitchin spectral curves associated with Higgs bundles.

(

**4619**views)

**Algebraic Curves: an Introduction to Algebraic Geometry**

by

**William Fulton**-

**Benjamin**

These notes develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. It assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials.

(

**13488**views)