Logo

Geometric Complexity Theory: An Introduction for Geometers

Small book cover: Geometric Complexity Theory: An Introduction for Geometers

Geometric Complexity Theory: An Introduction for Geometers
by

Publisher: arXiv
Number of pages: 38

Description:
This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory (GCT). The article is written to be accessible to graduate students. Numerous open questions in algebraic geometry and representation theory relevant for GCT are presented.

Home page url

Download or read it online for free here:
Download link
(440KB, PDF)

Similar books

Book cover: Lectures On Old And New Results On Algebraic CurvesLectures On Old And New Results On Algebraic Curves
by - Tata Institute Of Fundamental Research
The aim of this text is to give a proof, due to Hans Grauert, of an analogue of Mordell's conjecture. Contents: Introduction; Algebro-Geometric Background; Algebraic Curves; The Theorem of Grauert (Mordell's conjecture for function fields).
(10219 views)
Book cover: Abelian VarietiesAbelian Varieties
by
Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.
(13278 views)
Book cover: Introduction To Algebraical GeometryIntroduction To Algebraical Geometry
by - Oxford University Press
The author's aim has been to produce a book suitable to the beginner who wishes to acquire a sound knowledge of the more elementary parts of the subject, and also sufficient for the candidate for a mathematical scholarship.
(7230 views)
Book cover: Algebraic Curves: an Introduction to Algebraic GeometryAlgebraic Curves: an Introduction to Algebraic Geometry
by - Benjamin
These notes develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. It assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials.
(16548 views)