How To Write Proofs by Larry W. Cusick

Small book cover: How To Write Proofs

How To Write Proofs

Publisher: California State University, Fresno

Proofs are the heart of mathematics. If you are a math major, then you must come to terms with proofs--you must be able to read, understand and write them. What is the secret? What magic do you need to know? The short answer is: there is no secret, no mystery, no magic. All that is needed is some common sense and a basic understanding of a few trusted and easy to understand techniques.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: An Introduction to Mathematical ReasoningAn Introduction to Mathematical Reasoning
by - Cambridge University Press
This book introduces basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory.
Book cover: Proof in Mathematics: An IntroductionProof in Mathematics: An Introduction
by - Kew Books
This is a small (98 page) textbook designed to teach mathematics and computer science students the basics of how to read and construct proofs. The book takes a straightforward, no nonsense approach to explaining the core technique of mathematics.
Book cover: A Introduction to Proofs and the Mathematical VernacularA Introduction to Proofs and the Mathematical Vernacular
by - Virginia Tech
The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.
Book cover: A Gentle Introduction to the Art of MathematicsA Gentle Introduction to the Art of Mathematics
by - Southern Connecticut State University
The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).