Logo

Riemannian Submanifolds: A Survey

Small book cover: Riemannian Submanifolds: A Survey

Riemannian Submanifolds: A Survey
by

Publisher: arXiv
Number of pages: 272

Description:
Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(5458 views)
Book cover: Riemann Surfaces, Dynamics and GeometryRiemann Surfaces, Dynamics and Geometry
by - Harvard University
This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students.
(10854 views)
Book cover: Complex Analysis on Riemann SurfacesComplex Analysis on Riemann Surfaces
by - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(10734 views)
Book cover: Medians and Means in Riemannian Geometry: Existence, Uniqueness and ComputationMedians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
by - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(6884 views)