Logo

Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation

Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
by

Publisher: arXiv
Number of pages: 48

Description:
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. Firstly, the existence and uniqueness results of local medians are given. In order to compute medians in practical cases, we propose a subgradient algorithm and prove its convergence.

Home page url

Download or read it online for free here:
Download link
(900KB, PDF)

Similar books

Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(5399 views)
Book cover: Riemannian Geometry: Definitions, Pictures, and ResultsRiemannian Geometry: Definitions, Pictures, and Results
by - arXiv
A pedagogical but concise overview of Riemannian geometry is provided in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions and relevant theorems.
(3300 views)
Book cover: A Panoramic View of Riemannian GeometryA Panoramic View of Riemannian Geometry
by - Springer
In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.
(8429 views)
Book cover: A Course in Riemannian GeometryA Course in Riemannian Geometry
by - Trinity College, Dublin
From the table of contents: Smooth Manifolds; Tangent Spaces; Affine Connections on Smooth Manifolds; Riemannian Manifolds; Geometry of Surfaces in R3; Geodesics in Riemannian Manifolds; Complete Riemannian Manifolds; Jacobi Fields.
(8083 views)