Logo

A Course in Machine Learning

Small book cover: A Course in Machine Learning

A Course in Machine Learning
by

Publisher: ciml.info
Number of pages: 189

Description:
CIML is a set of introductory materials that covers most major aspects of modern machine learning (supervised learning, unsupervised learning, large margin methods, probabilistic modeling, learning theory, etc.). It's focus is on broad applications with a rigorous backbone.

Home page url

Download or read it online for free here:
Download link
(2.9MB, PDF)

Similar books

Book cover: Statistical Foundations of Machine LearningStatistical Foundations of Machine Learning
by
This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.
(9499 views)
Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - arXiv
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
(22741 views)
Book cover: Machine Learning: A Probabilistic PerspectiveMachine Learning: A Probabilistic Perspective
by - The MIT Press
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.
(4096 views)
Book cover: An Introduction to Probabilistic ProgrammingAn Introduction to Probabilistic Programming
by - arXiv.org
This text is designed to be a graduate-level introduction to probabilistic programming. It provides a thorough background for anyone wishing to use a probabilistic programming system, and introduces the techniques needed to build these systems.
(5155 views)