**A Course in Machine Learning**

by Hal Daumé III

**Publisher**: ciml.info 2012**Number of pages**: 189

**Description**:

CIML is a set of introductory materials that covers most major aspects of modern machine learning (supervised learning, unsupervised learning, large margin methods, probabilistic modeling, learning theory, etc.). It's focus is on broad applications with a rigorous backbone.

Download or read it online for free here:

**Download link**

(2.9MB, PDF)

## Similar books

**Introduction to Machine Learning**

by

**Amnon Shashua**-

**arXiv**

Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).

(

**18764**views)

**Machine Learning**

by

**Abdelhamid Mellouk, Abdennacer Chebira**-

**InTech**

Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.

(

**13330**views)

**Elements of Causal Inference: Foundations and Learning Algorithms**

by

**J. Peters, D. Janzing, B. Schölkopf**-

**The MIT Press**

This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...

(

**3273**views)

**Statistical Foundations of Machine Learning**

by

**Gianluca Bontempi, Souhaib Ben Taieb**

This handbook aims to present the statistical foundations of machine learning intended as the discipline which deals with the automatic design of models from data. This manuscript aims to find a good balance between theory and practice.

(

**6517**views)