**A Course in Machine Learning**

by Hal DaumÃ© III

**Publisher**: ciml.info 2012**Number of pages**: 189

**Description**:

CIML is a set of introductory materials that covers most major aspects of modern machine learning (supervised learning, unsupervised learning, large margin methods, probabilistic modeling, learning theory, etc.). It's focus is on broad applications with a rigorous backbone.

Download or read it online for free here:

**Download link**

(2.9MB, PDF)

## Similar books

**The LION Way: Machine Learning plus Intelligent Optimization**

by

**Roberto Battiti, Mauro Brunato**-

**Lionsolver, Inc.**

Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.

(

**4909**views)

**Understanding Machine Learning: From Theory to Algorithms**

by

**Shai Shalev-Shwartz, Shai Ben-David**-

**Cambridge University Press**

This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.

(

**1495**views)

**Reinforcement Learning: An Introduction**

by

**Richard S. Sutton, Andrew G. Barto**-

**The MIT Press**

The book provides a clear and simple account of the key ideas and algorithms of reinforcement learning. It covers the history and the most recent developments and applications. The only necessary mathematical background are concepts of probability.

(

**11346**views)

**Machine Learning and Data Mining: Lecture Notes**

by

**Aaron Hertzmann**-

**University of Toronto**

Contents: Introduction to Machine Learning; Linear Regression; Nonlinear Regression; Quadratics; Basic Probability Theory; Probability Density Functions; Estimation; Classification; Gradient Descent; Cross Validation; Bayesian Methods; and more.

(

**3289**views)