**An Introduction to Mathematical Reasoning**

by Peter J. Eccles

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: B00AKE1PT6**Number of pages**: 364

**Description**:

The purpose of this book is to introduce the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory, topics which include many fundamental ideas which are part of the tool kit of any mathematician.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Book of Proof**

by

**Richard Hammack**-

**Virginia Commonwealth University**

This textbook is an introduction to the standard methods of proving mathematical theorems. It is written for an audience of mathematics majors at Virginia Commonwealth University, and is intended to prepare the students for more advanced courses.

(

**30781**views)

**Proofs and Concepts: the fundamentals of abstract mathematics**

by

**Dave Witte Morris, Joy Morris**-

**University of Lethbridge**

This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.

(

**11250**views)

**How To Write Proofs**

by

**Larry W. Cusick**-

**California State University, Fresno**

Proofs are the heart of mathematics. What is the secret? The short answer is: there is no secret, no mystery, no magic. All that is needed is some common sense and a basic understanding of a few trusted and easy to understand techniques.

(

**7753**views)

**An Inquiry-Based Introduction to Proofs**

by

**Jim Hefferon**-

**Saint Michael's College**

Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. It consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks.

(

**6700**views)