**An Introduction to Mathematical Reasoning**

by Peter J. Eccles

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: B00AKE1PT6**Number of pages**: 364

**Description**:

The purpose of this book is to introduce the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory, topics which include many fundamental ideas which are part of the tool kit of any mathematician.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Proofs in Mathematics**

by

**Alexander Bogomolny**-

**Interactive Mathematics Miscellany and Puzzles**

I'll distinguish between two broad categories. The first is characterized by simplicity. In the second group the proofs will be selected mainly for their charm. Most of the proofs in this book should be accessible to a middle grade school student.

(

**8146**views)

**An Introduction to Higher Mathematics**

by

**Patrick Keef, David Guichard, Russ Gordon**-

**Whitman College**

Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction); Number Theory (The Euclidean Algorithm); Functions (Injections and Surjections, Cardinality and Countability).

(

**10058**views)

**Mathematical Reasoning: Writing and Proof**

by

**Ted Sundstrom**-

**Pearson Education, Inc.**

'Mathematical Reasoning' is designed to be a text for the first course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics.

(

**8084**views)

**Proofs and Concepts: the fundamentals of abstract mathematics**

by

**Dave Witte Morris, Joy Morris**-

**University of Lethbridge**

This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.

(

**10143**views)