**Notes on Measure and Integration**

by John Franks

**Publisher**: arXiv 2009**Number of pages**: 118

**Description**:

This text grew out of notes I have used in teaching a one quarter course on integration at the advanced undergraduate level. My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.

Download or read it online for free here:

**Download link**

(690KB, PDF)

## Similar books

**An Introductory Single Variable Real Analysis**

by

**Marcel B. Finan**-

**Arkansas Tech University**

The text is designed for an introductory course in real analysis suitable to upper sophomore or junior level students who already had the calculus sequel and a course in discrete mathematics. The content is considered a moderate level of difficulty.

(

**8650**views)

**Introduction to Lebesgue Integration**

by

**W W L Chen**-

**Macquarie University**

An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.

(

**12066**views)

**Irrational Numbers and Their Representation by Sequences and Series**

by

**Henry Parker Manning**-

**J. Wiley & sons**

This book is intended to explain the nature of irrational numbers, and those parts of Algebra which depend on the theory of limits. We have endeavored to show how the fundamental operations are to be performed in the case of irrational numbers.

(

**3256**views)

**Orders of Infinity**

by

**G. H. Hardy**-

**Cambridge University Press**

The ideas of Du Bois-Reymond's 'Infinitarcalcul' are of great and growing importance in all branches of the theory of functions. The author brings the Infinitarcalcul up to date, stating explicitly and proving carefully a number of general theorems.

(

**7127**views)