**Notes on Measure and Integration**

by John Franks

**Publisher**: arXiv 2009**Number of pages**: 118

**Description**:

This text grew out of notes I have used in teaching a one quarter course on integration at the advanced undergraduate level. My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.

Download or read it online for free here:

**Download link**

(690KB, PDF)

## Similar books

**Theory of Functions of a Real Variable**

by

**Shlomo Sternberg**

The topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras, etc.

(

**29217**views)

**An Introduction to Real Analysis**

by

**John K. Hunter**-

**University of California Davis**

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

(

**1721**views)

**Real Analysis for Graduate Students: Measure and Integration Theory**

by

**Richard F. Bass**-

**CreateSpace**

Nearly every Ph.D. student in mathematics needs to take a preliminary or qualifying examination in real analysis. This book provides the necessary tools to pass such an examination. The author presents the material in as clear a fashion as possible.

(

**8206**views)

**A Primer of Real Analysis**

by

**Dan Sloughter**-

**Synechism.org**

This is a short introduction to the fundamentals of real analysis. Although the prerequisites are few, the author is assuming that the reader has the level of mathematical maturity of one who has completed the standard sequence of calculus courses.

(

**1473**views)