**Undergraduate Analysis Tools**

by Bruce K. Driver

**Publisher**: University of California, San Diego 2013**Number of pages**: 186

**Description**:

Contents: Natural, integer, and rational Numbers; Fields; Real Numbers; Complex Numbers; Set Operations, Functions, and Counting; Metric Spaces; Series and Sums in Banach Spaces; More Sums and Sequences; Topological Considerations; Differential Calculus in One Real Variable; Simple Integration Theory; Extending the Integral by Uniform Limits.

Download or read it online for free here:

**Download link**

(9.2MB, PDF)

## Similar books

**Notes on Measure and Integration**

by

**John Franks**-

**arXiv**

My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.

(

**3772**views)

**Introduction to Real Analysis**

by

**Lee Larson**-

**University of Louisville**

From the table of contents: Basic Ideas (Sets, Functions and Relations, Cardinality); The Real Numbers; Sequences; Series; The Topology of R; Limits of Functions; Differentiation; Integration; Sequences of Functions; Fourier Series.

(

**3682**views)

**Elementary Real Analysis**

by

**B. S. Thomson, J. B. Bruckner, A. M. Bruckner**-

**Prentice Hall**

The book is written in a rigorous, yet reader friendly style with motivational and historical material that emphasizes the big picture and makes proofs seem natural rather than mysterious. Introduces key concepts such as point set theory and other.

(

**14250**views)

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**10746**views)