Logo

Hopf Algebras in General and in Combinatorial Physics: a practical introduction

Small book cover: Hopf Algebras in General and in Combinatorial Physics: a practical introduction

Hopf Algebras in General and in Combinatorial Physics: a practical introduction
by

Publisher: arXiv
Number of pages: 40

Description:
This tutorial is intended to give an accessible introduction to Hopf algebras. The mathematical context is that of representation theory, and we also illustrate the structures with examples taken from combinatorics and quantum physics, showing that in this latter case the axioms of Hopf algebra arise naturally. The text contains many exercises, some taken from physics, aimed at expanding and exemplifying the concepts introduced.

Home page url

Download or read it online for free here:
Download link
(480KB, PDF)

Similar books

Book cover: Universal Algebra for Computer ScienceUniversal Algebra for Computer Science
by - Wagner Mathematics
A text on universal algebra with a strong emphasis on applications and examples from computer science. The text introduces signatures, algebras, homomorphisms, initial algebras, free algebras, and illustrates them with interactive applications.
(10259 views)
Book cover: Smarandache Near-ringsSmarandache Near-rings
by - American Research Press
Near-rings are one of the generalized structures of rings. This is a book on Smarandache near-rings where the Smarandache analogues of the near-ring concepts are developed. The reader is expected to have a background in algebra and in near-rings.
(7799 views)
Book cover: Workbook in Higher AlgebraWorkbook in Higher Algebra
by
A set of notes for a Higher Algebra course. It covers Group Theory, Field and Galois Theory, Elementary Factorization Theory, Dedekind Domains, Module Theory, Ring Structure Theory, Tensor Products, Zorn’s Lemma and some Applications.
(11075 views)
Book cover: Commutator Theory for  Congruence Modular VarietiesCommutator Theory for Congruence Modular Varieties
by - Cambridge University Press
This book presents the basic theory of commutators in congruence modular varieties and some of its strongest applications. The authors take an algebraic approach, using some of the shortcuts that Taylor and others have discovered.
(7559 views)