**Abstract Algebra: The Basic Graduate Year**

by Robert B. Ash

2002

**Description**:

This is a text for the basic graduate course in abstract algebra. It covers fundamental algebraic structures (groups, rings, fields and modules), and maps between them. The text is written in conventional style, the book can be used as a classroom text or as a reference. Solutions to all problems are included in the text.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Infinite-dimensional Lie Algebras**

by

**Iain Gordon**-

**University of Edinburgh**

Contents: Central extensions; Virasoro algebra; Heisenberg algebra; Enveloping algebras; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras.

(

**11552**views)

**Clifford Algebra, Geometric Algebra, and Applications**

by

**Douglas Lundholm, Lars Svensson**-

**arXiv**

These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.

(

**13291**views)

**Smarandache Rings**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

The author embarked on writing this book on Smarandache rings (S-rings) specially to motivate both ring theorists and Smarandache algebraists to develop and study several important and innovative properties about S-rings.

(

**11598**views)

**The Algebra of Invariants**

by

**J.H. Grace, A. Young**-

**Cambridge, University Press**

Invariant theory is a subject within abstract algebra that studies polynomial functions which do not change under transformations from a linear group. This book provides an English introduction to the symbolical method in the theory of Invariants.

(

**10055**views)