**Geometry of Numbers with Applications to Number Theory**

by Pete L. Clark

**Publisher**: University of Georgia 2013**Number of pages**: 138

**Description**:

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart (Quasi)-Polynomial, Minkowski's Convex Body Theorems, Lattice Constants for Ellipsoids, Minkowski-Hlawka Theorem -- and its applications to number theory, especially to solutions of Diophantine equations (and especially, to integers represented by quadratic forms).

Download or read it online for free here:

**Download link**

(700KB, PDF)

## Similar books

**Topics in the Theory of Quadratic Residues**

by

**Steve Wright**-

**arXiv**

Beginning with Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study ...

(

**3814**views)

**The Smarandache Function**

by

**C. Dumitrescu, V. Seleacu**-

**Erhus University Press**

The function in the title is originated from the Romanian mathematician Florentin Smarandache, who has significant contributions in mathematics and literature. This text introduces the Smarandache function and discusses its generalisations.

(

**7556**views)

**Predicative Arithmetic**

by

**Edward Nelson**-

**Princeton Univ Pr**

The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.

(

**13054**views)

**A set of new Smarandache functions, sequences and conjectures in number theory**

by

**Felice Russo**-

**American Research Press**

The fascinating Smarandache's universe is halfway between the recreational mathematics and the number theory. This book presents new Smarandache functions, conjectures, solved and unsolved problems, new type sequences and new notions in number theory.

(

**8627**views)