**Geometry of Numbers with Applications to Number Theory**

by Pete L. Clark

**Publisher**: University of Georgia 2013**Number of pages**: 138

**Description**:

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart (Quasi)-Polynomial, Minkowski's Convex Body Theorems, Lattice Constants for Ellipsoids, Minkowski-Hlawka Theorem -- and its applications to number theory, especially to solutions of Diophantine equations (and especially, to integers represented by quadratic forms).

Download or read it online for free here:

**Download link**

(700KB, PDF)

## Similar books

**Langlands Correspondence for Loop Groups**

by

**Edward Frenkel**-

**Cambridge University Press**

This book provides a review of an important aspect of the geometric Langlands program - the role of representation theory of affine Kac-Moody algebras. It provides introductions to such notions as vertex algebras, the Langlands dual group, etc.

(

**4924**views)

**A set of new Smarandache functions, sequences and conjectures in number theory**

by

**Felice Russo**-

**American Research Press**

The fascinating Smarandache's universe is halfway between the recreational mathematics and the number theory. This book presents new Smarandache functions, conjectures, solved and unsolved problems, new type sequences and new notions in number theory.

(

**7884**views)

**Comments and topics on Smarandache notions and problems**

by

**Kenichiro Kashihara**-

**Erhus University Press**

An examination of some of the problems posed by Florentin Smarandache. The problems are from different areas, such as sequences, primes and other aspects of number theory. The problems are solved in the book, or the author raises new questions.

(

**7664**views)

**On Some of Smarandache's Problems**

by

**Krassimir Atanassov**-

**Erhus Univ Pr**

A collection of 27 Smarandache's problems which the autor solved by 1999. 22 problems are related to different sequences, 4 problems are proved, modifications of two problems are formulated, and counterexamples to two of the problems are constructed.

(

**7010**views)