**Geometry of Numbers with Applications to Number Theory**

by Pete L. Clark

**Publisher**: University of Georgia 2013**Number of pages**: 138

**Description**:

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart (Quasi)-Polynomial, Minkowski's Convex Body Theorems, Lattice Constants for Ellipsoids, Minkowski-Hlawka Theorem -- and its applications to number theory, especially to solutions of Diophantine equations (and especially, to integers represented by quadratic forms).

Download or read it online for free here:

**Download link**

(700KB, PDF)

## Similar books

**Collections of Problems on Smarandache Notions**

by

**Charles Ashbacher**-

**Erhus University Press**

This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.

(

**11764**views)

**A set of new Smarandache functions, sequences and conjectures in number theory**

by

**Felice Russo**-

**American Research Press**

The fascinating Smarandache's universe is halfway between the recreational mathematics and the number theory. This book presents new Smarandache functions, conjectures, solved and unsolved problems, new type sequences and new notions in number theory.

(

**7341**views)

**Algorithms for Modular Elliptic Curves**

by

**J. E. Cremona**-

**Cambridge University Press**

The author describes the construction of modular elliptic curves giving an algorithm for their computation. Then algorithms for the arithmetic of elliptic curves are presented. Finally, the results of the implementations of the algorithms are given.

(

**9740**views)

**The Smarandache Function**

by

**C. Dumitrescu, V. Seleacu**-

**Erhus University Press**

The function in the title is originated from the Romanian mathematician Florentin Smarandache, who has significant contributions in mathematics and literature. This text introduces the Smarandache function and discusses its generalisations.

(

**6281**views)