Logo

Geometry of Numbers with Applications to Number Theory

Small book cover: Geometry of Numbers with Applications to Number Theory

Geometry of Numbers with Applications to Number Theory
by

Publisher: University of Georgia
Number of pages: 138

Description:
The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart (Quasi)-Polynomial, Minkowski's Convex Body Theorems, Lattice Constants for Ellipsoids, Minkowski-Hlawka Theorem -- and its applications to number theory, especially to solutions of Diophantine equations (and especially, to integers represented by quadratic forms).

Home page url

Download or read it online for free here:
Download link
(700KB, PDF)

Similar books

Book cover: Collections of Problems on Smarandache NotionsCollections of Problems on Smarandache Notions
by - Erhus University Press
This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.
(11764 views)
Book cover: A set of new Smarandache functions, sequences and conjectures in number theoryA set of new Smarandache functions, sequences and conjectures in number theory
by - American Research Press
The fascinating Smarandache's universe is halfway between the recreational mathematics and the number theory. This book presents new Smarandache functions, conjectures, solved and unsolved problems, new type sequences and new notions in number theory.
(7341 views)
Book cover: Algorithms for Modular Elliptic CurvesAlgorithms for Modular Elliptic Curves
by - Cambridge University Press
The author describes the construction of modular elliptic curves giving an algorithm for their computation. Then algorithms for the arithmetic of elliptic curves are presented. Finally, the results of the implementations of the algorithms are given.
(9740 views)
Book cover: The Smarandache FunctionThe Smarandache Function
by - Erhus University Press
The function in the title is originated from the Romanian mathematician Florentin Smarandache, who has significant contributions in mathematics and literature. This text introduces the Smarandache function and discusses its generalisations.
(6281 views)