**Elementary Differential Equations with Boundary Value Problems**

by William F. Trench

**Publisher**: Brooks Cole 2013**ISBN/ASIN**: 0534263283**ISBN-13**: 9780534263287**Number of pages**: 807

**Description**:

Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology.

Download or read it online for free here:

**Download link**

(9MB, PDF)

## Similar books

**Computational Mathematics for Differential Equations**

by

**N. V. Kopchenova, I. A. Maron**

This is a manual on solving problems in computational mathematics. The book is intended primarily for engineering students, but may also prove useful for economics students, graduate engineers, and postgraduate students in the applied sciences.

(

**12315**views)

**Traveling Wave Solutions of Parabolic Systems**

by

**A. Volpert, V. Volpert, V. Volpert**-

**American Mathematical Society**

The theory of traveling waves described by parabolic equations and systems is a rapidly developing branch of modern mathematics. This book presents a general picture of current results about wave solutions of parabolic systems and their stability.

(

**10755**views)

**Notes on Diffy Qs: Differential Equations for Engineers**

by

**Jiří Lebl**-

**Lulu.com**

One semester introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, and the Laplace transform.

(

**34063**views)

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**8179**views)