**Geometry of the Quintic**

by Jerry Shurman

**Publisher**: Wiley-Interscience 1997**ISBN/ASIN**: 0471130176**ISBN-13**: 9780471130178**Number of pages**: 208

**Description**:

The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students at the advanced undergraduate and beginning graduate levels to develop connections between the algebra, geometry, and analysis that they know, and to better appreciate the totality of what they have learned.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Notes on Galois Theory**

by

**Mark Reeder**-

**Boston College**

From the table of contents: Basic ring theory, polynomial rings; Finite fields; Extensions of rings and fields; Computing Galois groups of polynomials; Galois groups and prime ideals; Cyclotomic extensions and abelian numbers.

(

**7713**views)

**Galois Theory: Lectures Delivered at the University of Notre Dame**

by

**Emil Artin**-

**University of Notre Dame**

The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.

(

**4361**views)

**Algebraic Equations**

by

**George Ballard Mathews**-

**Cambridge University Press**

This book is intended to give an account of the theory of equations according to the ideas of Galois. This method analyzes, so far as exact algebraical processes permit, the set of roots possessed by any given numerical equation.

(

**9002**views)

**Generic Polynomials: Constructive Aspects of the Inverse Galois Problem**

by

**C. U. Jensen, A. Ledet, N. Yui**-

**Cambridge University Press**

A clearly written book, which uses exclusively algebraic language (and no cohomology), and which will be useful for every algebraist or number theorist. It is easily accessible and suitable also for first-year graduate students.

(

**13873**views)