Machine Learning, Neural and Statistical Classification
by D. Michie, D. J. Spiegelhalter
Publisher: Ellis Horwood 1994
ISBN/ASIN: 013106360X
ISBN-13: 9780131063600
Number of pages: 298
Description:
The aim of this book is to provide an up-to-date review of different approaches to classification, compare their performance on a wide range of challenging data-sets, and draw conclusions on their applicability to realistic industrial problems. As the book's title suggests. a wide variety of approaches has been taken towards this task. Three main historical strands of research can be identified: statistical, machine learning and neural network.
Download or read it online for free here:
Download link
(1.7MB, PDF)
Similar books

by C. Weber, M. Elshaw, N. M. Mayer - InTech
This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.
(20057 views)

by Zdravko Markov - Central Connecticut State University
Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning ...
(8237 views)

by T. Hastie, R. Tibshirani, J. Friedman - Springer
This book brings together many of the important new ideas in learning, and explains them in a statistical framework. The authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties.
(38226 views)

by Owain Evans, et al. - AgentModels.org
This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.
(4755 views)