**Symmetry and Separation of Variables**

by Willard Miller

**Publisher**: Addison-Wesley 1977**ISBN/ASIN**: 0521177391**Number of pages**: 318

**Description**:

Originally published in 1977, this volume is concerned with the relationship between symmetries of a linear second-order partial differential equation of mathematical physics, the coordinate systems in which the equation admits solutions via separation of variables, and the properties of the special functions that arise in this manner.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations**

by

**K. Yosida**-

**Tata Institute of Fundamental Research**

In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and their applications to the initial value problem for differential equations.

(

**7266**views)

**An Introduction to Microlocal Analysis**

by

**Richard B. Melrose, Gunther Uhlmann**-

**MIT**

The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.

(

**5924**views)

**Introductory Finite Difference Methods for PDEs**

by

**D. M. Causon, C. G. Mingham**-

**BookBoon**

This book presents finite difference methods for solving partial differential equations (PDEs) and also general concepts like stability, boundary conditions etc. The book is intended for undergraduates who know Calculus and introductory programming.

(

**7594**views)

**Linear Partial Differential Equations and Fourier Theory**

by

**Marcus Pivato**-

**Cambridge University Press**

Textbook for an introductory course on linear partial differential equations and boundary value problems. It also provides introduction to basic Fourier analysis and functional analysis. Written for third-year undergraduates in mathematical sciences.

(

**22915**views)