Logo

Lectures on Periodic Homogenization of Elliptic Systems

Small book cover: Lectures on Periodic Homogenization of Elliptic Systems

Lectures on Periodic Homogenization of Elliptic Systems
by

Publisher: arXiv.org
Number of pages: 246

Description:
In recent years considerable advances have been made in quantitative homogenization of partial differential equations in the periodic and non-periodic settings. This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients...

Home page url

Download or read it online for free here:
Download link
(2.2MB, PDF)

Similar books

Book cover: Lectures on Cauchy ProblemLectures on Cauchy Problem
by - Tata Institute of Fundamental Research
A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain conditions which are given on a hypersurface in the domain. Cauchy problems are an extension of initial value problems.
(5349 views)
Book cover: Symmetry and Separation of VariablesSymmetry and Separation of Variables
by - Addison-Wesley
This volume is concerned with the relationship between symmetries of a linear second-order partial differential equation of mathematical physics and the coordinate systems in which the equation admits solutions via separation of variables.
(5936 views)
Book cover: Nonlinear Partial Differential Equations of Elliptic TypeNonlinear Partial Differential Equations of Elliptic Type
by - arXiv
This textbook provides the background which is necessary to initiate work on a Ph.D. thesis in Applied Nonlinear Analysis. The purpose is to provide a broad perspective in the subject. The level is aimed at beginning graduate students.
(5617 views)
Book cover: Exterior Differential Systems and Euler-Lagrange Partial Differential EquationsExterior Differential Systems and Euler-Lagrange Partial Differential Equations
by - University Of Chicago Press
The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.
(11987 views)