Logo

Combinatorial Theory by Gian-Carlo Rota

Small book cover: Combinatorial Theory

Combinatorial Theory
by


Number of pages: 414

Description:
In 1998, Gian-Carlo Rota gave his famous course, Combinatorial Theory, at MIT for the last time. John N. Guidi taped the lectures and took notes which he then wrote up in an almost verbatim manner conveying the substance and some of the atmosphere of the course. Topics covered included sets, relations, enumeration, order, matching, matroids, and geometric probability.

Home page url

Download or read it online for free here:
Download link
(7.8MB, PDF)

Similar books

Book cover: Combinatorial AlgorithmsCombinatorial Algorithms
by - Academic Press Inc
This is a collection of mathematical algorithms with many new and interesting examples in this second edition. The authors tried to place in the reader's hands a kit of building blocks with which the reader can construct more elaborate structures.
(12649 views)
Book cover: Discrepancy TheoryDiscrepancy Theory
by - Macquarie University
Contents: Uniform Distribution; Classical Discrepancy Problem; Generalization of the Problem; Introduction to Lower Bounds; Introduction to Upper Bounds; Fourier Transform Techniques; Upper Bounds in the Classical Problem; Disc Segment Problem; etc.
(3703 views)
Book cover: An  Introduction to Combinatorics and Graph TheoryAn Introduction to Combinatorics and Graph Theory
by - Whitman College
The book covers the classic parts of Combinatorics and graph theory, with some recent progress in the area. Contents: Fundamentals; Inclusion-Exclusion; Generating Functions; Systems of Distinct Representatives; Graph Theory; Polya-Redfield Counting.
(1301 views)
Book cover: New Perspectives in Algebraic CombinatoricsNew Perspectives in Algebraic Combinatorics
by - Cambridge University Press
The rich combinatorial problems arising from the study of various algebraic structures are the subject of the book. It will present the state of the art to graduate students and researchers in combinatorics as well as algebra, geometry, and topology.
(6590 views)