An Elementary Illustrated Introduction to Simplicial Sets

Small book cover: An Elementary Illustrated Introduction to Simplicial Sets

An Elementary Illustrated Introduction to Simplicial Sets

Publisher: arXiv.org
Number of pages: 58

This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familiar with just the fundamentals of algebraic topology.

Home page url

Download or read it online for free here:
Download link
(3.1MB, PDF)

Similar books

Book cover: Lectures on Introduction to Algebraic TopologyLectures on Introduction to Algebraic Topology
by - Tata Institute of Fundamental Research
These notes were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; and more.
Book cover: Modern Algebraic TopologyModern Algebraic Topology
by - Macmillan
Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.
Book cover: Introduction to Algebraic Topology and Algebraic GeometryIntroduction to Algebraic Topology and Algebraic Geometry
Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.
Book cover: Differential Forms and Cohomology: CourseDifferential Forms and Cohomology: Course
by - Intelligent Perception
Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.