**Lectures on Introduction to Algebraic Topology**

by G. de Rham

**Publisher**: Tata Institute of Fundamental Research 1969**ISBN/ASIN**: B0006CSS4C**Number of pages**: 71

**Description**:

These are notes of a part of lectures which the author gave at the Tata Institute of Fundamental Research in 1966. They were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; The group of a tame link given by a good plane projection; etc.

Download or read it online for free here:

**Download link**

(370KB, PDF)

## Similar books

**The Homology of Iterated Loop Spaces**

by

**F. R. Cohen, T. J. Lada, P. J. May**-

**Springer**

A thorough treatment of homology operations and of their application to the calculation of the homologies of various spaces. The book studies an up to homotopy notion of an algebra over a monad and its role in the theory of iterated loop spaces.

(

**4985**views)

**Algebraic and Geometric Surgery**

by

**Andrew Ranicki**-

**Oxford University Press**

Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.

(

**4544**views)

**Notes on the course Algebraic Topology**

by

**Boris Botvinnik**-

**University of Oregon**

Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.

(

**4733**views)

**Equivariant Stable Homotopy Theory**

by

**G. Jr. Lewis, J. P. May, M. Steinberger, J. E. McClure**-

**Springer**

Our purpose is to establish the foundations of equivariant stable homotopy theory. We shall construct a stable homotopy category of G-spectra,and use it to study equivariant duality, equivariant transfer, the Burnside ring, and related topics.

(

**8814**views)