**Lectures on Introduction to Algebraic Topology**

by G. de Rham

**Publisher**: Tata Institute of Fundamental Research 1969**ISBN/ASIN**: B0006CSS4C**Number of pages**: 71

**Description**:

These are notes of a part of lectures which the author gave at the Tata Institute of Fundamental Research in 1966. They were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; The group of a tame link given by a good plane projection; etc.

Download or read it online for free here:

**Download link**

(370KB, PDF)

## Similar books

**Topology Lecture Notes**

by

**Thomas Ward**-

**UEA**

Contents: Topological and Metric Spaces, Homotopy Exquivalence, Fundamental Groups, Covering Spaces and Applications, Classification of Surfaces, Simplicial Complexes and Homology Groups, Homology Calculations, Simplicial Approximation, etc.

(

**6788**views)

**A Primer on Homotopy Colimits**

by

**Daniel Dugger**-

**University of Oregon**

This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.

(

**4869**views)

**An Introduction to Algebraic Surgery**

by

**Andrew Ranicki**-

**arXiv**

Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.

(

**5931**views)

**Algebraic and Geometric Surgery**

by

**Andrew Ranicki**-

**Oxford University Press**

Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.

(

**5008**views)