Logo

Modeling Agents with Probabilistic Programs

Small book cover: Modeling Agents with Probabilistic Programs

Modeling Agents with Probabilistic Programs
by

Publisher: AgentModels.org
Number of pages: 345

Description:
This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases and bounded rationality. The book assumes basic programming experience but is otherwise self-contained.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Introduction To Machine LearningIntroduction To Machine Learning
by
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(25405 views)
Book cover: Elements of Causal Inference: Foundations and Learning AlgorithmsElements of Causal Inference: Foundations and Learning Algorithms
by - The MIT Press
This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...
(3417 views)
Book cover: Foundations of Machine LearningFoundations of Machine Learning
by - The MIT Press
This is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools.
(3264 views)
Book cover: Machine Learning for Data StreamsMachine Learning for Data Streams
by - The MIT Press
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.
(3785 views)