**Kähler-Einstein metrics: Old and New**

by Daniele Angella, Cristiano Spotti

**Publisher**: arXiv.org 2017**Number of pages**: 48

**Description**:

We present classical and recent results on Kaehler-Einstein metrics on compact complex manifolds, focusing on existence, obstructions and relations to algebraic geometric notions of stability (K-stability). These are the notes for the SMI course 'Kaehler-Einstein metrics' given by C.S. in Cortona (Italy), May 2017.

Download or read it online for free here:

**Download link**

(700KB, PDF)

## Similar books

**Complex Geometry of Nature and General Relativity**

by

**Giampiero Esposito**-

**arXiv**

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

(

**10870**views)

**Complex Analytic and Differential Geometry**

by

**Jean-Pierre Demailly**-

**Universite de Grenoble**

Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.

(

**11780**views)

**Complex Manifolds and Hermitian Differential Geometry**

by

**Andrew D. Hwang**-

**University of Toronto**

The intent is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. A number of interesting examples is provided.

(

**6831**views)

**Complex Manifolds**

by

**Julius Ross**-

**Stanford University**

From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.

(

**1076**views)