 # Introduction to Differential Geometry and General Relativity Introduction to Differential Geometry and General Relativity
by

Number of pages: 138

Description:
From the table of contents: distance, open sets, parametric surfaces and smooth functions, smooth manifolds and scalar fields, tangent vectors and the tangent space, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, geodesics and local inertial frames, the Riemann curvature tensor, comoving frames and proper time, the stress tensor and the relativistic stress-energy tensor, three basic premises of general relativity, the Einstein field equations and derivation of Newton's law, the Schwarzschild metric and event horizons, White Dwarfs, neutron stars and black holes.

(1.7MB, PDF)

## Similar books Mass and Angular Momentum in General Relativity
by - arXiv
We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.
(5862 views) Lecture Notes on General Relativity
by - University of California
Lecture notes on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein's equations, and three applications: gravitational radiation, black holes, and cosmology.
(11594 views) Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations
by - arXiv
This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.
(9529 views) An Introduction to the Theory of Rotating Relativistic Stars
by - arXiv
These notes introduce the theory of rotating stars in general relativity. The focus is on the theoretical foundations, with a detailed discussion of the spacetime symmetries, the choice of coordinates and the derivation of the equations of structure.
(8567 views)