**Differential Geometry Course Notes**

by Richard Koch

**Publisher**: University of Oregon 2005**Number of pages**: 188

**Description**:

These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**Notes on Differential Geometry**

by

**Noel J. Hicks**-

**Van Nostrand**

A concise introduction to differential geometry. The ten chapters of Hicks' book contain most of the mathematics that has become the standard background for not only differential geometry, but also much of modern theoretical physics and cosmology.

(

**7495**views)

**Differential Geometry: A First Course in Curves and Surfaces**

by

**Theodore Shifrin**-

**University of Georgia**

Contents: Curves (Examples, Arclength Parametrization, Frenet Frame); Surfaces: Local Theory (Parametrized Surfaces, Gauss Map, Covariant Differentiation, Parallel Translation, Geodesics); Surfaces: Further Topics (Holonomy, Hyperbolic Geometry,...).

(

**1602**views)

**Differential Geometry in Physics**

by

**Gabriel Lugo**-

**University of North Carolina at Wilmington**

These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.

(

**11858**views)

**Elementary Differential Geometry**

by

**Gilbert Weinstein**-

**UAB**

These notes are for a beginning graduate level course in differential geometry. It is assumed that this is the students' first course in the subject. Thus the choice of subjects and presentation has been made to facilitate a concrete picture.

(

**7408**views)