**Differential Geometry Course Notes**

by Richard Koch

**Publisher**: University of Oregon 2005**Number of pages**: 188

**Description**:

These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**Topics in Differential Geometry**

by

**Peter W. Michor**-

**American Mathematical Society**

Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.

(

**8483**views)

**A Course Of Differential Geometry**

by

**John Edward Campbell**-

**Clarendon Press**

Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.

(

**3492**views)

**Course of Differential Geometry**

by

**Ruslan Sharipov**-

**Samizdat Press**

Textbook for the first course of differential geometry. It covers the theory of curves in three-dimensional Euclidean space, the vectorial analysis both in Cartesian and curvilinear coordinates, and the theory of surfaces in the space E.

(

**12507**views)

**Notes on Differential Geometry**

by

**Noel J. Hicks**-

**Van Nostrand**

A concise introduction to differential geometry. The ten chapters of Hicks' book contain most of the mathematics that has become the standard background for not only differential geometry, but also much of modern theoretical physics and cosmology.

(

**10500**views)