**An Introduction to Partial Differential Equations**

by Per Kristen Jakobsen

**Publisher**: arXiv.org 2019**Number of pages**: 226

**Description**:

These lecture notes view the subject through the lens of applied mathematics. From this point of view, the physical context for basic equations like the heat equation, the wave equation and the Laplace equation are introduced early on, and the focus of the lecture notes are on methods, rather than precise mathematical definitions and proofs. With respect to methods, both analytical and numerical approaches are discussed.

Download or read it online for free here:

**Download link**

(2.3MB, PDF)

## Similar books

**Nonlinear Partial Differential Equations of Elliptic Type**

by

**Vicentiu Radulescu**-

**arXiv**

This textbook provides the background which is necessary to initiate work on a Ph.D. thesis in Applied Nonlinear Analysis. The purpose is to provide a broad perspective in the subject. The level is aimed at beginning graduate students.

(

**6043**views)

**Introductory Finite Difference Methods for PDEs**

by

**D. M. Causon, C. G. Mingham**-

**BookBoon**

This book presents finite difference methods for solving partial differential equations (PDEs) and also general concepts like stability, boundary conditions etc. The book is intended for undergraduates who know Calculus and introductory programming.

(

**8105**views)

**Introduction to the Method of Multiple Scales**

by

**Per Jakobsen**-

**arXiv**

These lecture notes give an introduction to perturbation method with main focus on the method of multiple scales as it applies to pulse propagation in nonlinear optics. Aimed at students that have little or no background in perturbation methods.

(

**3156**views)

**Linear Partial Differential Equations and Fourier Theory**

by

**Marcus Pivato**-

**Cambridge University Press**

Textbook for an introductory course on linear partial differential equations and boundary value problems. It also provides introduction to basic Fourier analysis and functional analysis. Written for third-year undergraduates in mathematical sciences.

(

**23748**views)