**A First Course of Partial Differential Equations in Physical Sciences and Engineering**

by Marcel B. Finan

**Publisher**: Arkansas Tech University 2009**Number of pages**: 285

**Description**:

Partial differential equations are often used to construct models of the most basic theories underlying physics and engineering. The goal of this book is to develop the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from the above mentioned fields.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Finite Difference Computing with PDEs**

by

**Hans Petter Langtangen, Svein Linge**-

**Springer**

This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners.

(

**1064**views)

**Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations**

by

**K. Yosida**-

**Tata Institute of Fundamental Research**

In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and their applications to the initial value problem for differential equations.

(

**7028**views)

**Introduction to the Numerical Integration of PDEs**

by

**B. Piette**-

**University of Durham**

In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.

(

**7737**views)

**Linear Elliptic Equations of Second Order**

by

**Erich Miersemann**-

**Leipzig University**

These lecture notes are intended as an introduction to linear second order elliptic partial differential equations. From the table of contents: Potential theory; Perron's method; Maximum principles; A discrete maximum principle.

(

**3545**views)