**Traveling Wave Solutions of Parabolic Systems**

by A. Volpert, V. Volpert, V. Volpert

**Publisher**: American Mathematical Society 2000**ISBN/ASIN**: 0821811436**ISBN-13**: 9780821811436**Number of pages**: 448

**Description**:

The theory of traveling waves described by parabolic equations and systems is a rapidly developing branch of modern mathematics. This book presents a general picture of current results about wave solutions of parabolic systems, their existence, stability, and bifurcations. The main part of the book contains original approaches developed by the authors.

Download or read it online for free here:

**Download link**

(3MB, PDF)

## Similar books

**Differential Equations**

by

**William Woolsey Johnson**-

**J. Wiley**

The differential equation must necessarily at first be viewed in connection with a 'primitive', from which it might have been obtained by the direct process, and the solution consists in the discovery of such a primitive, when it exists...

(

**8838**views)

**Elementary Differential Equations with Boundary Value Problems**

by

**William F. Trench**-

**Brooks Cole**

Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L ...

(

**8307**views)

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**9623**views)

**Topics in dynamics I: Flows**

by

**Edward Nelson**-

**Princeton University Press**

Lecture notes for a course on differential equations covering differential calculus, Picard's method, local structure of vector fields, sums and Lie products, self-adjoint operators on Hilbert space, commutative multiplicity theory, and more.

(

**16237**views)